Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
I. ПЛОСКАЯ СИСТЕМА СИЛГЛАВА I. СИЛЫ, ЛИНИИ ДЕЙСТВИЯ КОТОРЫХ ПЕРЕСЕКАЮТСЯ В ОДНОЙ ТОЧКЕ1-1. Равновесие трех силРассмотрим равновесие тела под действием только трех сил, а затем перейдем к рассмотрению равновесия тела под действием какого угодно количества сил линии действия которых пересекаются в одной точке. При решении задач на равновесие трех сил удобно пользоваться геометрическим способом, как наиболее наглядным.
Рис. 15 Для того, чтобы три силы, приложенные в одной точке твердого тела, находились в равновесии, необходимо и достаточно, чтобы силовой треугольник, построенный на этих силах, был замкнутым. Следует обратить внимание: что в замкнутом силовом треугольнике конец каждого предыдущего вектора совпадает с началом следующего (рис. 15), и на теорему о трех силах. Если три непараллельные силы, лежащие в одной плоскости, уравновешиваются, то их линии действия пересекаются в одной точке. План решения задачПри решении задач необходимо придерживаться следующего плана: 1 Выделяем материальную систему (тело или материальную частицу), равновесие которой следует рассмотреть. Такой системой является то тело, к которому приложены заданные силы и искомые реакции. 2. Изображаем активную силу, действующую на материальную систему, равновесие которой рассматриваем. 3. Освобождаем эту систему от связен, заменяя действие связей реакциями. 4. Строим замкнутый силовой треугольник. Построение замкнутого силового треугольника всегда начинаем с известной силы. В том случае, когда возникают затруднения в выборе правильного направления реакции в ту или иную сторону (например, выбор направления реакции тонкого невесомого стержия), рекомендуется это направление установить из условия замкнутости силового треугольника и затем изобразить реакции на основном чертеже, с целью выяснения характера работы данного элемента конструкции (так, например, можно узнать, работает ли стержень на сжатие или растяжение). 5- Решаем силовой треугольник. По известным элементам треугольника находим его неизвестные элементы. Если силовой треугольник косоугольный, то при решении используется теорема синусов. Иногда выгодно использовать условие пропорциональности сторон двух подобных треугольников (силового и треугольника на основном чертеже). Для удобства рекомендуется получить решение задачи, если это не усложняет решение, в алгебраическом (общем) виде, проверить правильность полученных формул по размерностям всех слагаемых (размерности всех слагаемых должны быть одинаковыми). Затем необходимо выбрать систему единиц, в которой нужно получить ответ, и все данные, перед подстановкой их в полученные формулы, перевести в эту систему. Большинство задач надо решать с точностью до трехзначных цифр (точность логарифмической линейки). У полученного численного результата нужно писать наименование. 1-2. Решение задачЗадача 1. Уличный фонарь (рис. 16) весом Решение 1. Рассматриваем равновесие узла С (болт шарнира С). 2. Изображаем активную силу 3. Освобождаем узел С от связей, наложенных на него Связями являются стержни 4. Строим замкнутый силовой треугольник (рис. Построение треугольника начинаем с известной силы
Рис. 16.
Рис. 17. Выбирая определенную величину этого вектора, мы, тем самым, устанавливаем масштаб, в котором будет построен силовой многоугольник. Далее, через начало вектора
Рис. 18. Реакция стержня 5. Решаем силовой треугольник
Но
Следовательно.
Принято сжимающее усилие в стержне выражать отрицательным числом, а растягивающее — положительным. Задача 2. Балка, весом которой пренебрегаем, шарнирно закреплена на опоре А, концом В она положена на катки. На балку действует вертикальная сила
Рис. 19. Решение 1. Рассматриваем равновесие балки 2. Изображаем силу 3. Освобождаем балку 4. Строим замкнутый силовой треугольник. Построение начинаем с известной силы вого треугольника заключаем, что реакция 5. Решаем силовой треугольник
Рис. 20.
Рис. 21. На рис. 21 Применяем теорему синусов к треугольнику
Отсюда,
Из рис. 20 видно, что
Итак,
Упражнения(см. скан) (см. скан)
|
1 |
Оглавление
|