Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 10.3. Отражение волны у конца линииРассмотрим отрезок однородной линии длиной
Рис. 10.3. Отрезок однородной линии, нагруженной на конце произвольным сопротивлением Рассмотрение явлений в линии начнём с момента времени
При определении напряжения на сопротивлении волны в точке
где
где
Таким образом, выражение (10.22) приводится к виду:
или
Складывая выражения (10.21) и (10.23), получим:
Подставляя выражение (10.24) в
Отношение
можно назвать переходным коэффициентом отражения. Как и при установившемся режиме, переходный коэффициент отражения Величина При удалении от конца линии отражённая волна по аналогии с ф-лой
Складывая это напряжение с Выражения (10.24) и (10.27) полностью решают задачу определения напряжения (или тока) на сопротивлении
Рис. 10.4. Эквивалентная схема, в которой линия, питающая нагрузку
Рис. 10.5. Отрезок линии, нагруженной на конце контуром Рассмотрим важный В данном случае
Напряжение падающей волны в точке
Основываясь на ф-ле (10.24), сведём схему рис. 10.5 к эквивалентной схеме (рис. 10.6), для которой эдс равна
где
Допустим, что контур согласован с линией, т. е. что резонансное сопротивление контура (в стационарном режиме) равно волновому сопротивлению линии. Тогда выражение (10.29) переходит в следующее:
при
Рис. 10.6. Эквивалентная схема отрезка линии, нагруженной контуром После того как свободное колебание в контуре, вызванное «ударом» падающей волны в момент затухает, на контуре установится стационарное напряжение, соответствующее одной лишь падающей волне в точке
Можно поэтому считать, что время, необходимое для установления режима в согласованной на конце линии, определяется постоянной времени резонансного контура. При определении затухания контура должно быть учтено шунтирующее действие линии, т. е.
Составим выражение для отражённой волны напряжения. Для этого можно воспользоваться общей ф-лой (10.27). В данном примере, после того как найдены
Из сопоставления выражений (10.28) и
а при удалении от конца линии эта волна изменяется по закону
Таким образом, в рассматриваемом примере отражённая волна напряжения представляет собой колебание, затухающее как вдоль линии, так и во времени. Всё вышесказанное относится также и к току в линии.
|
1 |
Оглавление
|