Главная > Электрохимические системы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 20. КОНЦЕНТРАЦИОННОЕ ПЕРЕНАПРЯЖЕНИЕ

125. Определение

В разд. 7 концентрационное перенапряжение было определено как разность потенциалов между электродом сравнения, расположенным вблизи электрода сразу за диффузной частью двойного слоя, и другим электродом сравнения, находящимся в глубине раствора, минус разность потенциалов между этими электродами, которая имелась бы при том же распределении тока, но при одинаковых концентрациях в глубине раствора и вблизи поверхности электрода. На таких электродах сравнения должна протекать та же реакция, что и на рабочем электроде.

В этом определении фигурируют диффузионный слой вблизи электрода, где происходят концентрационные изменения, и глубина раствора, где концентрации постоянны. Омическое падение потенциала вычитается из измеряемой величины, так что концентрационное перенапряжение не зависит от положения электрода сравнения в глубине раствора. Отметим, что вычитаемое омическое падение потенциала относится не к реальному раствору с переменными концентрациями, а к воображаемому раствору с постоянными концентрациями при том же распределении тока. Это позволяет рассчитать вычитаемое напряжение путем решения уравнения Лапласа, проанализированного в гл. 18. Тем самым удается избежать строгого рассмотрения концентрационных изменений вблизи электрода, которые делают уравнение Лапласа непригодным в этой области. Как это происходит, мы увидим в следующей главе, где будут рассматриваться токи, составляющие заметную долю предельного тока.

В разд. 7 говорилось также о другом возможном разбиении разности потенциалов в растворе, при котором омическая составляющая определяется как та, которая исчезает сразу же, как только плотность тока становится всюду равной нулю. Практическое неудобство этого разбиения состоит в том, что в большинстве систем выключение внешнего тока не дает автоматической гарантии того, что плотность тока обратится в нуль в каждой точке раствора [1] даже в отсутствие концентрационных изменений вблизи электродов. Для теории такое разбиение также неудобно, поскольку для расчета омического падения

потенциала при этом пришлось бы рассматривать раствор с переменным составом.

Согласно представлениям, развитым в гл. 2, потенциал перемещаемого электрода сравнения (относительно фиксированного электрода сравнения) определяется соотношением

где реакция на электроде сравнения описывается уравнением (12-6). Выбирая в качестве стандартного некоторый компонент , равенство (125-1) можно переписать в виде

так как

Подставляя в уравнение (125-2) равенство (16-3), получаем

Первые два члена в правой части этого равенства относятся к омическому падению потенциала и электродной реакции соответственно. Последний член описывает диффузионный потенциал [уравнение (70-7)]. Последние два члена выражены через градиенты электрохимических потенциалов нейтральных комбинаций ионов и обращаются в нуль при постоянных концентрациях, т. е. в случае постоянной проводимости раствора и.

Введем в уравнение (125-4) концентрации с помощью равенства (77-7). Тогда имеем

где — молярный коэффициент активности компонента i, отнесенный к стандартному компоненту [уравнение (77-9)].

Если вычесть отсюда омическое падение потенциала, которое существовало бы в отсутствие концентрационных изменений, и проинтегрировать по диффузионному слою, то получится

концентрационное перенапряжение в соответствии с приведенным выше определением:

где индексы относятся к глубине раствора и поверхности электрода соответственно. Плотность тока в диффузионном слое приблизительно постоянна и может быть принята равной ее значению на поверхности электрода Для разбавленных растворов можно пренебречь коэффициентами активности и считать, что числа переноса определяются равенством (70-5). Тогда, используя соотношение Нернста—Эйнштейна (75-1), получим

Этот результат можно сравнить с уравнением (30) работы [2].

Вычитание величины в интегралах уравнений (125-6) и (125-7) соответствует вычитанию омического вклада, который имелся бы в отсутствие концентрационных изменений. Таким образом, концентрационное перенапряжение равно разности потенциалов концентрационной ячейки плюс омический вклад, обусловленный изменением проводимости внутри диффузионного слоя, которое связано с изменениями концентраций вблизи электродов.

1
Оглавление
email@scask.ru