Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 10. СИЛА И УСКОРЕНИЕПрежде чем приступить к обсуждению поразительной параллели между массой и весом, упомянутой в предыдущем параграфе, применим уже установленные нами законы к случаю сил, действующих непрерывно. Очевидно, все наши теоремы можно строго сформулировать опять-таки лишь с помощью методов дифференциального исчисления, однако нижеследующие соображения могут помочь составить приближенное представление о некоторых соотношениях. Непрерывно действующая сила вызывает движение, скорость которого непрерывно изменяется. Представим себе, что сила заменена быстрой последовательностью ударов, или импульсов силы. При каждом ударе скорость испытывает мгновенное изменение; в результате получится многократно изломанная мировая линия, как показано на фиг. 10; она будет аппроксимировать истинную непрерывно искривленную мировую линию, и ее можно использовать вместо последней при вычислениях. Далее, если силу К заменить имеет место изменение скорости, равное
Эта формула представляет собой формулировку закона движения в динамике непрерывно действующих сил. Он утверждает, что сила вызывает ускорение, пропорциональное величине этой силы, постоянное отношение К.: Этому закону можно придать иную форму, более целесообразную во многих отношениях, в частности более удобную для выполнения обобщений, которых: требует динамика Эйнштейна (см. гл. VI, § 7, стр. 268). Когда скорость Если на тело действует сила К, то количество движения В этой форме закон справедлив только для движений, происходящих вдоль прямой линии, и для сил, действующих вдоль той же прямой. Если ситуация не такова, т. е. если сила действует под углом к мгновенному направлению движения, то закон следует каким-то образом обобщить. Представим себе силу в виде стрелы (вектора) и спроектируем ее на три взаимно перпендикулярных направления, скажем, на координатные оси. На фиг. 21 изображена сила, действующая в плоскости
Фиг. 21. Компоненты
|
1 |
Оглавление
|