Главная > Эйнштейновская теория относительности
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 12. КОСМОЛОГИЯ

Впервые высказанная Эрнстом Махом идея о том, что инерциальные силы обусловлены действием полной системы неподвижных звезд, наводит на мысль о применении общей теории относительности ко всей Вселенной. Этот шаг действительно был предпринят Эйнштейном в 1917 г., и с этого момента начинается период современного развитйя космологии и космогонии — наук о строении и происхождении Вселенной. Это развитие продолжается в полную силу и в наши дни, обогащаясь важнейшими результатами, хотя мы еще далеки от окончательных заключений. Описание этого колоссального поля исследований и предположений потребовало бы еще одной книги такого же

объема, как наша. Но поскольку космологические исследования многие считают самой важной частью работы Эйнштейна, эти исследования нельзя обойти. Поэтому мы кратко обрисуем современную ситуацию в этой области.

Размышления о Вселенной занимают человека с незапамятных времен. Древние полагали, что звезды прикреплены к хрустальной сфере; вопрос о том, что за нею, тогда не поднимался. С другой стороны, Аристотель рассматривал время как бесконечное. В средние века Фома Аквинский учил, что это мнение Аристотеля нельзя ни подтвердить, ни опровергнуть. Сотворение космоса и времени может базироваться только на вере. Начало мира в определенный момент времени и его конечная протяженность были твердо установившейся доктриной схоластики. Идея о том, что космос можно рассматривать как бесконечный, была выражена средневековым мыслителем Николаем Кузанским (1401 -1464 гг.). Ньютон включил бесконечность пространства и времени в свои фундаментальные принципы (см. стр. 62) и размышлял над вопросом, конечно ли число звезд и заполняют ли они конечную часть бесконечного пространства. Он пришел к заключению, что число звезд должно быть бесконечным и они должны распределяться в пространстве довольно равномерно, так как конечное число звезд рухнуло бы друг на друга под действием сил взаимного притяжения. Позднее выяснилось, что этот аргумент ведет к столь серьезным математическим трудностям, что стали даже задумываться о видоизменении ньютоновского закона тяготения на больших расстояниях.

Против предположения о конечном числе звезд существует еще одно возражение, прямо противоположное выдвинутому Ньютоном, — именно, что такая система стала бы расползаться и, таким образом, исчезла бы, растворившись в бесконечном пространстве. Звезды имеют довольно большие скорости, причем скорости, распределенные хаотически во всех направлениях. В этом смысле система напоминает молекулы газа, а ведь ясно, что газ, не ограниченный жесткими стенками, станет расширяться и постепенно улетучится в результате диффузии. Как учит нас кинетическая теория, для того чтобы избежать этой диффузии, недостаточно заменить стенки взаимными притягивающими силами, обратно пропорциональными квадрату расстояния, соответственно закону Ньютона. В свете этих соображений кажется весьма трудным объяснить, почему звездная система до сих пор существует, несмотря на такую тенденцию к расширению. Однако этот аргумент тоже потерял свою силу, поскольку современные исследования недавно обнаружили действительное существование подобного рода расширения Вселенной, о чем мы сейчас расскажем.

Существуют и другие критерии, которыми можно воспользоваться, подходя к проблеме о том, конечен или бесконечен звездный мир. Во втором случае, как утверждалось, все небо светилось бы ярким светом, ибо интенсивность света, посылаемого на Землю звездами, должна в последовательных сферических слоях одинаковой толщины возрастать, а яркость каждой отдельной звезды, наоборот, убывать, как квадрат расстояния до Земли, т. е. с одной и той же скоростью. Следовательно, если бы такие сферические оболочки простирались до бесконечности, а плотность звезд оставалась при этом приблизительно постоянной, то глаз видел бы яркую освещенность во всех направлениях. Одно время думали, что этот аргумент существенно ослабляется замечанием, что пространство не вполне пусто: в нем присутствуют атомы и частички пыли повсеместно, преимущественно с малой плотностью, но иногда в форме концентрированных облаков. Последние поглощают и рассеивают проходящие через них световые лучи, тем самым затуманивая и затемняя звезды. Но это возражение было бы справедливым лишь в том случае, если бы имело место начало мира в какой-то конкретный момент времени. В противном случае во Вселенной существовало бы тепловое равновесие и пылевые облака должны были бы становиться такими же горячими и яркими, как сами звезды. Эта позиция приводит к проблеме «тепловой смерти Вселенной», к представлению о необратимом выравнивании разностей температур, как тому учит термодинамика. Но не будем углубляться в обсуждение этого вопроса.

Все эти рассуждения не дают определенного ответа. Поэтому Эйнштейн, взявшись за исследование проблемы с точки зрения своей теории, сделал весьма решительный шаг. Он попытался прежде всего дать ответ на традиционный вопрос: как может материя быть однородно распределенной в пространстве, не переходя в состояние движения в направлении наружу от центра распределения и, таким образом, не растворяясь в бесконечном пространстве? Но здесь он был разочарован, так как столкнулся с теми же самыми трудностями, которые в свое время остановили предыдущих исследователей, подходивших к этой проблеме с классической позиции. Как мы уже сказали выше, эти трудности оказались столь велики, что ученые были вынуждены искать довольно радикальный выход, обратившись к попытке изменить ньютоновский закон силы на больших расстояниях. Аналогичным образом Эйнштейн предложил модификацию своего закона тяготения, сохранив, конечно, принцип общей инвариантности, но изменив уравнения поля так, что эти изменения оказались неуловимыми для планетных систем и проявлялись лишь на космологических расстояниях. Он воспользовался фактом, что его пространство неевклидово и искривлено.

Кривизна определяется десятью величинами

которые имеют ту же геометрическую природу, что и 10 метрических коэффициентов Эйнштейн заменил величинами где X — универсальная константа, и предположил, что эти комбинации определяются распределением масс, как раньше им определялись величины Его ожидания оправдались: существует статическое решение решение, не зависящее от времени) новых уравнений поля, соответствующее однородной плотности масс (звезд) в пространстве, обладающем замечательными свойствами: оно неевклидово, конечно, но неограничено.

Мы должны дать несколько пояснений относительно этого странного утверждения о том, что пространство может быть конечным, но все-таки не иметь границ или пределов. Рассмотрим двумерный случай: нетрудно представить себе конечную, но неограниченную поверхность, например сферу. Эйнштейн утверждает, что трехмерное пространство ведет себя аналогичным образом, в частности, для однородного распределения массы оно представляет собой трехмерный аналог сферической поверхности. Геодезические линии на сфере есть окружности наибольшего диаметра и, следовательно, замкнутые кривые. То же самое должно иметь место и для геодезических в нашем мире, которые представляются лучами света или траекториями свободно падающих частиц (невозмущенными локальными массами). Следовательно, световой сигнал или тело, посланные в одном направлении, должны вернуться с противоположной стороны, разумеется, после очень большого промежутка времени. Но существуют и другие следствия этой гипотезы, не выходящие полностью из пределов фактического опыта. В европейской обсерватории можно сфотографировать определенную звезду; в «стране антиподов» — скажем, в Сиднее в Австралии можно сфотографировать звезду, направление на которую точно противоположно первому. Представляется вполне резонным, что в сферической Вселенной оба наблюдателя фактически должны видеть одну и ту же звезду точно так же, как на поверхности Земли радиосигнал антиподов может прийти к нам из двух противоположных направлений. Можно было бы даже предполагать, что тождественность двух изображений звезд возможно установить с помощью каких-нибудь особенностей их спектра. Даже если обычный свет окажется неудачным посыльным для столь больших путешествий, мы располагаем современными методами радиоастрономии, позволяющими заглянуть в гораздо более далекие области пространства. И хотя это только размышления о будущих возможностях, они

показывают, что замкнутое, конечное и неограниченное пространство представляет собой вариант, доступный эмпирическим исследованиям.

В связи с эйнштейновской статической моделью выяснилось, что радиус кривизны трехмерной сферической поверхности связан с величиной константы А и обе эти величины зависят от полного количества материи во Вселенной. Чем больше полная масса, тем меньше радиус кривизны, и чем более разрежена материя, тем меньше кривизна.

Эта, скорее простая, модель Вселенной оказалась в то же Еремя вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. В самом деле, наблюдения обнаруживают лишь малые и нерегулярные движения звезд и их сравнительно равномерное распределение. Но новые идеи, выдвинутые Эйнштейном, стимулировали дальнейшие исследования, и вскоре весь подход к проблеме решительно изменился.

В том же самом 1917 г., в котором Эйнштейн опубликовал свою статическую модель космоса (с -членом), голландский астроном де Ситтер предложил другую модель, представляющую собой также решение эйнштейновских уравнений поля -членом). Это решение имело то свойство, что оно существовало определенным образом даже в случае «пустой» Вселенной, свободной от материи, а если в такой Вселенной появлялись массы, то решение переставало быть статическим: возникало некоторого рода космическое отталкивание между массами, стремящееся удалить массы друг от друга и растворить всю систему. Тенденция к расширению, согласно де Ситтеру, становилась, разумеется, заметной лишь на очень больших расстояниях. Де Ситтер обратился к поискам данных о движениях весьма удаленных объектов. В литературе он нашел лишь немногие не особенно надежные сообщения, касающиеся движения так называемых спиральных туманностей. Эти туманности, по сути дела, представляют собой гигантские скопления звезд, подобные галактической системе, к которой принадлежит наше Солнце, но столь далекие, что большинство из них представляется лишь туманными пятнами, хотя некоторые отчасти удается разделить на отдельные звезды. Теперь их часто называют галактиками. В те времена знания об этих объектах были весьма убогими. Но во всех случаях, в которых изучение доплер-эффекта (см. стр. 120) позволило определить радиальные скорости, величина красного смещения оказалась замечательно высокой по сравнению со значениями для более близких объектов — звезд

нашей собственной Галактики. Эти находки дали толчок дальнейшим теоретическим исследованиям и новым улучшенным измерениям расстояний и скоростей спиральных туманностей.

Примерно в 1929 г. американский астроном Хаббл обнаружил существование странной согласованности между расстоянием и скоростью туманности: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию; другими словами, система спиральных туманностей расширяется — как раз так, как предполагали ранние мыслители, опираясь на примитивное сравнение этой системы с газом. Но если считать, что это расширение происходило в прошлом точно так же, как оно происходит сейчас, то мы приходим к идее, что вся система должна иметь начало — момент, когда вся материя была сосредоточена в малом «сверхядре», и, следовательно, можно рассчитать период времени, прошедший с этого «сотворения мира» до настоящего момента. Результат, полученный из данных Хаббла, — от 2 до 3 миллиардов лет.

Тем временем релятивистская космология, начало которой заложили Эйнштейн и де Ситтер, стала переходить в руки Фридмана, Леметра, Толмана, Робертсона и др. Был обнаружен ряд новых возможных моделей Вселенной, соответствующих решениям, заключенным между крайними случаями, указанными Эйнштейном и де Ситтером, и возник вопрос, какая из этих моделей лучше соответствует эмпирическим данным, в частности фактам, установленным Хабблом. Сегодня существует множество ответвлений и усовершенствований теорий, а поток результатов наблюдений столь велик, что даже трудно судить о практической ситуации. Ранние идеи, считавшиеся когда-то наиболее плодотворными, оказались слишком ограниченными или даже ошибочными. Существуют нестатические решения эйнштейновских уравнений, которым присущи свойства, характерные для его статической модели 1917 г., — замкнутость и конечность; в двумерном представлении они соответствуют поверхности равномерно расширяющейся сферы, подобной надуваемому резиновому шару. Но эта-то конечность и замкнутость Вселенной, которая при первом своем появлении так будоражила умы, оказалась не такой уж привлекательной идеей, поскольку выяснилось, что существуют другие нестатические решения, согласно которым Вселенная бесконечна и «плоска». Можно даже утверждать, что классической модели расширяющегося газа, частицы которого подчиняются закону Ньютона в обычном евклидовом пространстве, вполне достаточно для объяснения всех основных особенностей наблюдений. Такую теорию можно было применить к расширяющейся Вселенной еще 100 или 150 лет назад. Однако идея о неустойчивой, системе звезд слишком чужда тем временам, и в литературе

едва ли встречается хотя бы одно упоминание о ней; лишь Больцман — один из основателей кинетической теории газов и статистической теории материи вообще — намекнул в 1895 г. на возможность существования расширяющихся систем звезд, но не занялся этим вопросом серьезно. На самом деле подобный классический подход следует модифицировать именно длявесьма удаленных и, следовательно, очень быстрых объектов. Здесь ньютоновская механика теряет почву и должна быть заменена механическими законами специальной теории относительности. Английский астроном Милн, исходя из этой точки зрения, построил теорию расширяющейся Вселенной на базе лишь специальной теории относительности и принципа однородности, утверждающего, что общая картина Вселенной совершенно одинакова, где бы ни был расположен наблюдатель. Милн был так убежден в силе своих принципов, что считал их даже логически неотразимыми. Он, как и Эддингтон до него, верил, что все строение Вселенной можно вывести из априорных принципов, не обращаясь к опыту, — и между тем, оба ратовали за совершенно различные и противоречащие друг другу «априорные» основания своих систем. Ни одна из этих систем не оказалась плодотворной для дальнейшего развития науки.

Судьба -члена, который Эйнштейн ввел в 1917 г. и который послужил стимулом для всех космологических исследований, оказалась довольно бурной. Вейль и Эддингтон интерпретировали его как универсальную космическую длину и выдвинули на базе этой идеи теорию, весьма обильную философскими рассуждениями. Позднее, когда выяснились возможности широкого выбора допустимых теорий, занимающих промежуточное положение между моделями Эйнштейна и де Ситтера, -член стал, пожалуй, излишним и сам Эйнштейн рекомендовал отбросить его. Но и он, и другие специалисты по космологии, по-видимому, упустили тот факт, что -член совершенно - необходим при оценке возраста Вселенной, вычисляемого путем экстраполяции в прошлое данных Хаббла с учетом максимального возраста отдельных метеоритов, звезд и звездных систем, получаемого из совершенно иных и независимых наблюдений (например, определение возраста метеоритов, найденных на Земле, производится путем анализа содержания радиоактивных элементов и продуктов их распада; при этом известные периоды полураспада служат как бы атомными часами, применяемыми в космической шкале времени). И возраст Вселенной как целого, и возраст отдельных объектов имеют, как оказалось, один и тот же порядок величины — несколько миллиардов лет. Однако -член при этом необходим для того, чтобы возраст Вселенной как целого оказался больше, чем возраст любого из упомянутых частных объектов в ней. Ситуация вновь изменилась,

когда новые тщательные исследования, выполненные после 1952 г., показали, что космические расстояния фактически больше, чем величины, принятые Хабблом. Теперь снова оказалось возможным опустить -член, не создавая затруднений, связанных с возрастом Вселенной, вычисленным по формулам Хаббла и на основе радиоактивных измерений возраста метеоритов и других небесных тел. Согласно современным измерениям, возраст Вселенной составляет около 5 миллиардов лет.

Идея об определенном моменте «начала мира» казалась столь странной, что были предприняты попытки обойти этот вопрос, заменяя явление возникновения Вселенной некоторым устойчивым состоянием. Это, очевидно, невозможно без принятия предположения, что материя постсянно создается из ничего, ибо как могут звезды двигаться, постоянно удаляясь друг от друга, и не дставлять позади себя все более и более разреженной области? А между тем ситуация совершенно не такова: имеются веские доказательства в пользу довольно однородного среднего распределения звезд во всей области пространства, доступной самым сильным телескопам.

Поэтому были выдвинуты теории, исходящие из предположения, что Вселенная находится в устойчивом состоянии благодаря постоянному сотворению материи. Что существуют так называемые «новые» и «сверхновые» звезды — это опытный факт. Его обычно объясняют как взрыв существующих звезд низкой светимости. Но Иордан предположил, что эти звезды могут быть в самом деле новыми, что гравитационная энергия может превращаться в реальную материю. Его теория представляет собой обобщение теории Эйнштейна: следуя предложению, выдвинутому Дираком, он допустил, что гравитационная константа общей теории (обобщение ньютоновской константы гравитации, см. стр. 330) на самом деле не константа, а переменная, истолковал ее как одиннадцатую компоненту поля и добавил ее к десяти компонентам метрического поля. Но несмотря на большие усилия, этот путь не дал никакого вразумительного результата. То же самое относится к теориям, предложенным Хойлом, Бонди и Голдом, которые предполагали, что во всем пространстве происходит порождение отдельных атомов водорода из ничего, и соответственно модифицировали эйнштейновские уравнения поля. К счастью — для создателей этой теории — число порождаемых при этом атомов столь мало (порядка 1 атома в кубе с ребром 100 м в течение столетия), что оно гораздо ниже величин, доступных наблюдению.

У читателя может сложиться впечатление, что современная космология ушла с твердой эмпирической почвы в такие дебри, где утверждения могут выдвигаться без всяких опасений, что их удается подвергнуть проверке наблюдениями. Это в самом

деле можно сказать о только что обрисованных теориях, особенно потому, что смешанное чувство восхищения и легкой неприязни, которое они вызывают, резко усиливается почти фанатической уверенностью, с которой эти теории пропагандируются своими авторами. К несчастью, но довольно естественно, такое положение вещей -было использовано различными идеологиями для того, чтобы объявить какие-то из этих теорий подтверждением своих догм и предать анафеме другие. Есть теологи, которые приветствуют космологию, когда она вводит начало мира, потому что этот процесс можно интерпретировать как акт божественного промысла.

Как нас уже убедили геология и палеонтология, временной масштаб Библии необходимо умножить на большой коэффициент; остается лишь еще увеличить этот коэффициент, чтобы истолковать библейскую сказку о сотворении мира как символическое представление того, чему учит наука. С другой стороны, материалисты и атеисты предпочитают находящуюся в устойчивом состоянии Вселенную типа предложенной Хойлом, что позволяет обойти акт сотворения и щекотливый вопрос: что было до этого акта? БСЭ занимает довольно нечеткую позицию, считая расширение явлением ограниченных масштабов во Вселенной, во всех остальных отношениях стационарной.

Все точки зрения, если их принимать догматически, чужды духу науки, и каждую из них можно опровергнуть, показав, что она не принимает во внимание все стороны вопроса. Те, кто приветствует идею о «начале», забывают, что с уверенностью можно утверждать лишь существование состояния высокой плотности материи, совершенно отличного от известного нам распределения отдельных звезд; можно усомниться, что в таком состоянии применимы представления О пространстве и времени, поскольку эти представления самым тесным образом связаны с характером разреженной системы звезд. Поэтому «начало» относится лишь к нашей способности опиевгвать положение вещей с помощью аппарата привычных нам понятий. Вопрос, имело ли место сотворение из ничего — не научная задача, а вопрос веры, лежащий вне возможностей опыта, о чем знали уже старые философы и теологи, вроде Фомы Аквинского. Атеистам, которым не нравится «начало», потому что его можно истолковать как сотворение, следует сказать, что начало

Вселенной в том виде, как она нам известна, может быть концом другой формы развития материи, хотя практически было бы совершенно невозможно узнать что-нибудь относительно этого периода, поскольку все следы были стерты в хаосе разрушения и перестройки.

Однако эксцентричности и фантазии не должны затенять того факта, что идеи Эйнштейна открыли новый путь изучения Вселенной и дали новый стимул старой астрономической науке, сравнимый по силе лишь с тем, который дал ей Коперник.

1
Оглавление
email@scask.ru