Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 7. МЕТРИКА ПРОСТРАНСТВЕННО-ВРЕМЕННОГО КОНТИНУУМАПолное множество выделенных мировых точек есть то, что действительно доступно достоверному подтверждению. Сам по себе четырехмерный пространственно-временной континуум лишен структуры. Определенная геометрия с конкретной метрикой на пространственно-временном континууме задается взаимным расположением мировых точек, установленным с помощью эксперимента. Таким образом, в реальном мире мы сталкиваемся с тем же положением, с которым встретились, рассматривая геометрию на поверхности. Поэтому и математический подход следует тем же самым приемам. Прежде всего зададимся в четырехмерном мире гауссовыми координатами — сеткой как-то заданных мировых точек. Пространство рассматривается как заполненное материей, находящейся в произвольном движении; она может деформироваться любым образом, но должна сохранять свою непрерывную связность. Как выразился Эйнштейн, она напоминает своеобразный «моллюск». В этом пространстве мы проводим три семейства пересекающихся линий, перенумеровав их, и помечаем эти семейства символами Все движущиеся жесткие системы отсчета представляют собой, конечно, частные формы этих общих, способных деформироваться систем. Но с нашей принципиальной точки зрения бессмысленно вводить жесткость как нечто заведомо данное. Разделение пространства и времени также произвольно. Действительно, поскольку скорости часов можно считать произвольными, но непрерывно меняющимися, пространство и полное множество всех «одновременных» мировых точек не есть физическая реальность. Если гауссовы координаты выбрать иным способом, одновременными станут другие мировые точки. Но то, что не меняется при переходе от одной системы гауссовых координат к другой, — это точки пересечения реальных мировых линий, меченые мировые точки, пространственно-временные совпадения. Все действительно доказуемые факты физики представляют собой качественные соотношения между положениями этих мировых точек и, таким образом, остаются неизменными при заменах гауссовых координат. Такого рода преобразования гауссовых координат пространственно-временного континуума состоят в переходе от одной системы отсчета к другой, которая также произвольно деформирована и находится в движении. Постулат о том, что мы пользуемся лишь действительно доказуемыми законами природы, имеет следствием, что эти законы инвариантны относительно произвольных преобразований гауссовых координат от На этом пути мы достигаем надежного обоснования общего подхода к пространственно-временному континууму с релятивистских позиций. Следующим шагом должно быть установление взаимосвязи этого математического метода со сделанными ранее физическими заключениями, кульминационным моментом которых было установление принципа эквивалентности. Мы теперь находимся в том же положении по отношению к четырехмерному миру, в котором был землемер в лесу после того, как разметил свою координатную сетку, но еще не начал обмерять ее с помощью измерительной рулетки. Наша задача — выбрать четырехмерную измерительную рулетку. Такой выбор предоставляет нам принцип эквивалентности. Мы уже знаем, что с помощью соответствующего выбора системы отсчета можно с уверенностью обеспечить отсутствие гравитационного поля в любой достаточно малой области мира. Существует бесконечное число таких систем отсчета. Они движутся прямолинейно и равномерно относительно друг друга, и в них справедливы законы специальной теории относительности. Поведение линеек и часов определяется преобразованиями Лоренца; прямые мировые линии олицетворяются световыми лучами и траекториями инерциального движения (см. стр. 230 и 233). В пределах этой малой области мира величина
— инвариант, имеющий прямой физический смысл. Действительно, если линия, соединяющая начало О (оно, как предполагается, находится внутри малой области) с мировой точкой прошедший между событиями
Фиг. 142. Метрика в окрестности мировой точки Оно доступно прямому измерению с помощью измерительных линеек и часов, и, таким образом, если ввести мнимую координату
Тот факт, что специальная теория относительности применима в малых областях пространства-времени, точно соответствует факту применимости евклидовой геометрии в достаточно малых областях искривленной поверхности. Но ни теоремы евклидовой геометрии, ни законы специальной теории относительности не обязаны выполняться в больших областях. Здесь не обязаны существовать прямые линии вообще, но лишь самые прямые или геодезические линии. Дальнейшее рассмотрение четырехмерного мира идет параллельно теории поверхностей. Сначала следует обмерить ячейки любой сетки гауссовых координат с помощью четырехмерного расстояния пределах малой области можно представить как прямые. Гиперболические калибровочные кривые Использование формулы (97) из теории поверхностей приводит к выражению
для инварианта
или, если изменить обозначения (записывая вместо
Величины В четырехмерном мире инвариантное расстояние
Эту формулу можно назвать обобщенной теоремой Пифагора в четырехмерном мире. Метрические коэффициенты
|
1 |
Оглавление
|