Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 4. ДВИЖУЩИЕСЯ ИЗМЕРИТЕЛЬНЫЕ ЛИНЕЙКИ И ЧАСЫНам предстоит теперь ответить на простейшие вопросы кинематики, связанные с измерениями длин одной и той же измерительной линейки и длительностей одного и того же отрезка времени в различных системах отсчета. Пусть линейка единичной длины расположена в начале системы отсчета
Фиг. 119. Лоренцово сокращение. На первый взгляд этот вопрос кажется безнадежно запутанным. Есть противники принципа относительности, простые умы, кто, познакомившись с этим осложнением в определении длины линейки, с благородным возмущением восклицает: «Разумеется, можно вывести все что угодно, если пользоваться неверными часами. Вот вам пример того, до какого абсурда может довести слепая вера в магическую силу математических формул», - и единым ударом сражают теорию относительности. Наш читатель, как мы надеемся, уже догадался, что формулы — ни в коей мере не самое главное обстоятельство: ведь мы имеем дело с чисто принципиальными соотношениями, которые можно с успехом понять и не обращаясь обязательно к математике. В самом деле, ведь мы могли не только обойтись без формул, но и без геометрических фигур и изложить всю проблему обычными словами, хотя в этом случае наша книга оказалась бы настолько громоздкой и настолько трудной для восприятия, что никто не взялся бы за ее публикацию и никто не стал бы ее читать. Обратимся сначала к чертежу в плоскости Итак, мы должны определить длину линейки в системе Это сжатие в точности совпадает с сокращением, предложенным Фицджеральдом и Лоренцом для объяснения опыта Майкельсона и Морли. Здесь оно появляется как естественное следствие кинематики Эйнштейна. Наоборот, при измерении в системе Итак, сокращение оказывается взаимным, а именно этого и требует теория относительности. Его величину удобнее всего находить с помощью преобразования Лоренца (70). Пусть При наблюдении этой линейки из системы
где
Полагая
Эта формула утверждает, что длина линейки в системе
Фиг. 120. Замедление времени. Те же самые соображения применимы и к определению интервала времени в двух различных системах отсчета Предположим, что в каждой пространственной точке системы Предположим, что в начале системы покоящихся в системе Для того чтобы вычислить величину удлинения, рассмотрим начавшийся в момент времени
Весь период времени
Таким образом, период времени
Это удлинение (замедление) времени противоположно по характеру сокращению длины. Разумеется, с обратной точки зрения единица времени по часам, покоящимся в системе Другими словами, с точки зрения любой выбранной системы все часы систем, движущихся относительно выбранной, кажутся запаздывающими. Течение событий во времени во всех системах, находящихся в относительном движении, замедлено, так что все события в движущейся системе запаздывают по отношению к соответствующим событиям в той системе, которую мы считаем покоящейся. К последствиям, вытекающим из этого факта и часто воспринимаемым как парадоксальные, мы вернемся позже. Время, которое показывают часы, покоящиеся в выбранной системе отсчета, называется собственным временем системы. Оно идентично «локальному времени» Лоренца. Шаг вперед, сделанный теорией Эйнщтейна, заключается не в формулировании законов, а скорее в принципиальном изменении точки зрения на эти законы. Лоренц ввел локальное время как вспомогательную математическую величину в противоположность истинному абсолютному времени. Эйнштейн доказал, что не существует средств, позволяющих определить это абсолютное время или отличить его от бесконечного числа эквивалентных локальных времен в различных системах отсчета, находящихся в относительном движении. Но это значит, что абсолютное время не имеет реального физического смысла. Временные данные имеют смысл только относительно определенных систем отсчета. В этом заключается завершение релятивизации понятия времени.
|
1 |
Оглавление
|