Главная > Эйнштейновская теория относительности
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 6. СЛОЖЕНИЕ СКОРОСТЕЙ

Теперь мы рассмотрим более глубоко законы эйнштейновской кинематики. При этом мы преимущественно будем ограничиваться плоскостью Получаемые при этом выводы совсем нетрудно обобщить на случай четырехмерного -пространства, поэтому мы будем лишь упоминать о нем по ходу дела.

Фиг. 125. Четырехмерные отрезки. а - временно-подобное расстояние пространственно-подобное расстояние

Световые линии, определяемые уравнением Делят плоскость на четыре квадранта (фиг. 116). Очевидно, сохраняет один и тот же знак в каждом квадранте, причем в двух противоположных квадрантах, содержащих ветви гиперболы в двух противоположных квадрантах, которые содержат ветви . Прямую мировую линию, проходящую через начало координат О, можно взять в качестве оси или оси соответственно тому, лежит ли она в квадранте или в квадранте Соответственно этому мы подразделяем мировые линии на «пространственно-подобные» и на «временно-подобные» (фиг. 125,а).

Во всякой инерциальной системе ось отделяет мировые точки «прошлого» от мировых точек «будущего» Но это подразделение различно в каждой инерциальной системе, поскольку при ином положении оси мировые точки, которые раньше лежали выше нее, т. е. в будущем, могут

оказаться ниже оси в прошлом, и наоборот. Лишь те события, которые представляются мировыми точками, лежащими в квадрантах единственным образом принадлежат либо к «прошлому», либо к «будущему» в любой инерциальной системе. Для такой мировой точки (фиг. 125, а) мы имеем в любой допустимой системе отсчета два события разделены интервалом времени, большим того времени, за которое свет покрывает путь от одной из этих точек до другой. Следовательно, мы всегда можем выбрать инерциальную систему так, что ее ось проходит через точку т. е. такую систему, в которой представляет событие, происходящее в пространственном начале отсчета. С точки зрения другой инерциальной системы наша инерциальная система будет двигаться равномерно и прямолинейно таким образом, что ее начало точно совпадает с событиями Тогда, очевидно, мы должны для события в системе положить

Во всякой инерциальной системе ось представляет геометрическое место мировых точек, соответствующих событиям, происходящим в пространственном начале координат на оси X (т. е. в точке и разделяет (на двумерной фигуре) точки, лежащие слева от начала, и точки, лежащие справа от него. Но в другой инерциальной системе с иной осью это разграничение будет иным. Оно определено единственным образом только для мировых точек, лежащих в квадрантах независимо от того, лежат ли они «до» или «после» пространственного начала координат. Для такой точки (фиг. 125,б) т. е. в любой допустимой системе отсчета временной интервал между событиями меньше того времени, которое затрачивает свет на прохождение расстояния от точки О до точки Таким образом, можно ввести подходящим образом выбранную движущуюся инерциальную систему с осью проходящей через в которой оба события, оказываются одновременными. В этой системе для события очевидно, следовательно,

Отсюда следует, что инвариант для любой мировой точки представляет собой измеримую величину, имеющую легко интерпретируемый наглядный смысл. Вводя подходящую систему отсчета мировую точку можно либо перевести «в то же самое место», в котором произошло событие О, и тогда разность времен между событиями происходящими в одной и той же пространственной точке в системе либо можно перевести «в тот же момент времени», в который произошло событие О, и тогда пространственное расстояние между двумя событиями в системе

Во всякой системе координат световые линии представляют движения, происходящие со скоростью света. В соответствии с этим каждая временно-подобная мировая линия представляет движение со скоростью, меньшей скорости света с. Или, подходя к вопросу с другой стороны, всякое движение, происходящее со скоростью, меньшей скорости света, можно «перевести в состояние покоя», поскольку существует временно-подобная мировая линия, соответствующая этому движению.

А как насчет движений, происходящих со скоростью, большей скорости света? В свете высказанных выше суждений казалось бы очевидным, что теория относительности Эйнштейна должна объявить такие движения невозможными. В самом деле, новая кинематика потеряла бы весь свой смысл, если бы существовали сигналы, позволяющие нам контролировать одновременность хода часов с помощью средств, включающих скорости, превышающие скорость света. По-видимому, здесь какая-то трудность.

Пусть система движется со скоростью относительно другой системы и пусть тело К движется относительно системы со скоростью и. Согласно обычной кинематике, относительная скорость тела К в системе равна

Теперь, если каждая превышает половину скорости Света, то и больше скорости света с, а это должно быть невозможным, согласно теории относительности.

Этот софизм, конечно, связан с тем обстоятельством, что скорости в релятивистской кинематике невозможно просто суммировать, ибо каждая система отсчета имеет собственные единицы длины и времени.

Необходимость учета этого обстоятельства с очевидностью Вытекает из того факта, что в любых двух системах, движущихся одна относительно другой, скорость света предполагается всегда одинаковой, — факта, уже использованного ранее при выводе преобразования Лоренца (гл. VI, § 2, стр. 230). Истинный закон сложения скоростей можно вывести из этого преобразования [формулы (70)]. Рассмотрим движущееся тело в системе Его движение может происходить в плоскости х, у, и, таким образом, его скорость будет иметь две компоненты их, и и движение может начаться в момент времени из начала координат. Мировая линия тела задается тогда уравнениями

Можно предвидеть, что движение окажется прямолинейным и в системе причем скорость будет иметь две постоянные компоненты Мировая линия движущегося тела в системе будет задаваться уравнениями

Для того чтобы получить соотношение между скоростями тела в системах введем выражения для в уравнения и с помощью формул преобразования Лоренца (70а). Вместо первого уравнения мы получаем

Сравнивая этот результат с уравнением получаем

Аналогичным образом из имеем

а с помощью (77а)

Уравнения (77а) и (776) выражают эйнштейновскую теорему сложения скоростей. Они занимают место простых формул обычной кинематики:

Выражая их, через их и через мы получаем формулы точно такой же структуры; единственная разница состоит в том, что заменяется на Это следует из эквивалентности всех систем отсчета и может быть проверено прямыми выкладками.

Если, в частности, мы имеем дело с лучом света, распространяющимся В направлении движения системы относительно системы то Тогда формулы (77) дают, естественно, ожидаемый результат:

который и выражает теорему о постоянстве скорости света. Более того, мы видим, что для любого тела, движущегося вдоль пространственной оси, до тех пор, пока . В самом деле, деля формулу (77а) на с, мы можем преобразовать результат к виду

Из этой формулы прямо следует наше утверждение, так как при указанных выше условиях второй член справа всегда меньше 1 (знаменатель больше 1, а каждый множитель в числителе меньше 1). Аналогичный вывод справедлив, конечно, и для движений, происходящих поперек пространственной оси, и для движений в любом направлении.

Итак, скорость света кинематически есть предельная скорость, которую невозможно превысить. Этот постулат теории Эйнштейна встретил упорную оппозицию. Он казался неоправданным ограничением планов исследователей, которые ждали в будущем открытий скоростей, превышающих скорость света.

Мы знаем, что -лучи радиоактивных веществ представляют собой электроны, движущиеся со скоростями, близкими к скорости света. Почему же невозможно ускорить их так, чтобы они двигались со скоростями больше скорости света?

Теория Эйнштейна, однако, утверждает, что это невозможно в принципе, поскольку лнерциальное сопротивление, или масса тела, возрастает по мере того, как его скорость приближается к скорости света. Таким образом, мы приходим к новой динамике, базирующейся на кинематике Эйнштейна.

1
Оглавление
email@scask.ru