Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5.2.8. Системы с произвольными голономными связями в шарнирахВ предыдущем разделе были изучены системы многих тел с шарнирами специальных типов. В настоящем разделе вводятся в рассмотрение шарниры с произвольными голономными связями (случай неголономных связей будет рассмотрен в разд. 5.3.2). Связи могут быть либо стационарными, либо нестационарными. На рис. 5.34, а - е приведено шесть примеров шарниров со стационарными связями. Тела, связанные этими шарнирами, имеют соответственно одну, две, три, четыре, пять и шесть степеней свободы в их движении друг относительно друга. На рис. 5.34,в тела контактируют постоянно плоскими поверхностями. На рис. 5.34,г одно из тел представляет маятник, точка подвеса которого может свободно перемещаться вдоль направляющей, фиксированной на другом теле. На рис. 5.34, д каждое тело имеет свою собственную направляющую. Направляющие вынуждены соприкасаться друг с другом, но могут свободно скользить одна вдоль другой. На рис. 5.34,е единственная внутренняя шарнирная сила вызывается пружиной. Вырожденный случай, в котором даже эта пружина отсутствует, не выпадает из правила. Шарниры с нестационарными связями получаются, например, в случае, когда форма направляющих на рис. 5.33, г и д меняется согласно некоторой заданной функции времени. В системе семи тел, изображенной на рис. 5.35, шарниры помечены просто символом свойств. Предполагается, что эти свойства должны быть перечислены отдельно. Движение тела 0 относительно инерциального пространства считается заданным в виде функции времени. Нумерация тел и шарниров здесь такая же, как на рис. 5.8, а, так что можно использовать снова ориентированный граф системы на рис. 5.8, в и соответствующие матрицы Рис. 5.34. (см. скан) Шесть шарниров с 1, 2, 3, 4. 5 и 6 степенями свободы. Представляет интерес только система отсчета Как и в разд. 5.2.4, эта система уравнений состоит из уравнения, описывающего движение центра масс всей системы, и системы уравнений, описывающих движение относительно этого центра масс. В практических приложениях использование специальных уравнений часто бывает выгодным. С точки зрения точности вычислений они могут быть даже необходимы.
Рис. 5.35. Система с шарнирами с произвольными голономными связями. Шарниры указаны буквой Н. Поэтому далее будут приведены обе системы уравнений. Их вывод в большей части идентичен. Подразделы, которые относятся только к специальным уравнениям, будут помечаться как частный случай. Будут нужны только два таких подраздела. Один, очень короткий, будет введен в самом начале. Другой следует после уравнений, применимых в обоих случаях, которые будут выведены в дальнейшем.
|
1 |
Оглавление
|