Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
9.3.4. ОПИСАНИЯ, ОСНОВАННЫЕ НА НЕРЕГУЛЯРНОСТЯХМы продолжим наше обсуждение метрических свойств, изложив два метода описания, рассчитанные на то, чтобы отображать существенные «нерегулярности» объекта. Первый метод использует отклонения от выпуклости, второй построен на локальных экстремумах периметра. 9.3.4.1. Выпуклая оболочка и дефицит, выпуклостиВыше мы определили выпуклое множество как множество, содержащее каждый отрезок прямой, соединяющий две его точки. Выпуклая оболочка Н произвольного множества S есть наименьшее выпуклое множество, содержащее S. Если множество 5 выпуклое с самого начала, то, конечно, как множество, ограниченное резиновой лентой, натянутой по периметру множества 5. Разность множеств
Рис. 9.16. Дефицит выпуклости объекта. Мы должны здесь упомянуть, что расширение понятия выпуклости на дискретные объекты требует некоторой осторожности. Трудности связаны с тем обстоятельством, что, если дан выпуклый аналоговый объект, его квантованный образ в общем случае не выпуклый. Квантованный круг, например, имеет ступенчатую границу и, таким образом, не попадает в число выпуклых. Простой и понятный способ решения этой задачи заключается в следующем: натянуть резиновую ленту вокруг квантованного объекта и считать, что дефицит выпуклости включает только те элементы фона, которые полностью лежат внутри резиновой ленты. Если дефицит выпуклости пуст, тогда, конечно, объект (квантованный) считается выпуклым. Грубо говоря, эти определения сводятся к заданию некоторого допуска, который следует учитывать до того, как относить дискретный объект к числу невыпуклых. 9.3.4.2. Локальные экстремумы границы объектаВ предыдущем пункте мы обсуждали способ описания кривой через ее точки высокой кривизны. Довод здесь заключался в том, что информативными следует считать такие точки, в которых имеют место какие-либо резкие изменения. Подобным же образом мы можем описать границу объекта с помощью точек, в которых она достигает локального экстремума по оси X или Y. На рис. 9.17, например, точки 1, 2, 3 и 5 представляют собой попеременно локальные минимумы и максимумы в направлении оси X, а точки 4 и б — максимум и минимум (единственные) в направлении оси Y. Как видно из рисунка, эти точки находятся вблизи точек границы с высокой кривизной, что бывает часто, хотя и не всегда.
Рис. 9.17. Локальные экстремумы объекта. Если должно использоваться описание объекта через экстремальные точки, необходимо, очевидно, сгладить малые флуктуации границы объекта. Один из способов выполнить эту операцию заключается в регуляризации объекта посредством скользящего среднего, но при этом неизбежно возникает существенная потеря разрешающей способности. Более мощный метод называется гистерезисным сглаживанием. Гистерезисное сглаживание на самом деле представляет собой нелинейную процедуру для отыскания «существенных» экстремумов вещественной функции; для целей описания объекта она просто применяется отдельно к координатам X и Y точек границы. Имея это в виду, проиллюстрируем ее действие на примере функции одной переменной. Предположим, как показано на рис. 9.18, нам дана функция тянут ни вверх, ни вниз. В точке С был достигнут другой локальный максимум (то, что здесь имеет место также и глобальный максимум, сейчас несущественно). В точке D прямоугольник перемещался в сторону, не двигаясь ни вверх, ни вниз, а в точке Е указатель начал тянуть прямоугольник вниз. Функция
Рис. 9.18. Механизм гистерезисного сглаживания. Локальный экстремум сглаженной функции определяет существенный локальный экстремум исходной функции. В типичном случае, как показано на рис. 9.18, сглаженная функция достигает локального экстремума не в единственной точке. Когда это имеет место, разумно в качестве экстремальной выбрать точку с наименьшей координатой X — в данном случае точку С. (Заметим, что область функции Было бы поучительным сравнить общие характеристики гистерезисного сглаживания с регуляризацией, поскольку это два основных метода, конкурирующих в решении текущей задачи отыскания экстремума функций. Основная трудность при использовании регуляризации как метода отыскания экстремума заключается в том, что, если мы хотим сглаживать малые флуктуации полностью, то должны применять относительно широкое усредняющее окно; такое окно, видимо, может также смазать и существенный экстремум. Пример такого случая показан на рис. 9.19, где мы изобразили функцию
Рис. 9.19. Регуляризация функций. Тогда функция Возвращаясь к первоначальной теме — описанию объекта через экстремумы его границы, — мы приведем несколько примеров, чтобы дать читателю возможность почувствовать «вкус» этого метода. Читатель может сам убедиться, что знак плюс и круг имеют идентичные описания в терминах экстремумов, хотя их дефициты выпуклости совершенно различны. С другой стороны, знак плюс в обычной ориентации и знак плюс, повернутый на 45°, имеют совершенно различные описания экстремумов. Если знак плюс повернут на 45°, описание через экстремумы близко совпадает с описанием через точки высокой кривизны. Это не так в случае, когда знак плюс имеет свою обычную ориентацию. Ясно, что в общем случае на описание через экстремумы влияет ориентация объекта относительно координатных осей.
|
1 |
Оглавление
|