Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5.8. ПРОЦЕДУРЫ МИНИМИЗАЦИИ КВАДРАТИЧНОЙ ОШИБКИ5.8.1. МИНИМАЛЬНАЯ КВАДРАТИЧНАЯ ОШИБКА И ПСЕВДООБРАЩЕНИЕВ случае ранее рассмотренных функций критерия внимание в основном было сфокусировано на выборках, классифицируемых с ошибкой. Теперь будет рассмотрена функция критерия, включающая все выборки. Там, где прежде осуществлялся предварительный поиск весового вектора а, приводящего к положительным значениям все скалярные произведения константами. Таким образом, задача нахождения решения системы линейных неравенств заменяется более строгой, но более понятной задачей определения решения системы линейных уравнений. Вид системы линейных уравнений упрощается, если ввести матричные обозначения. Пусть Тогда наша задача сводится к определению весового вектора а, удовлетворяющего уравнению
Если бы матрица У была невырожденной, то можно было бы записать равенство
то данный подход будет состоять в минимизации квадрата длины вектора ошибки. Данная операция эквивалентна задаче минимизации функции критерия, выражаемой суммой квадратичных ошибок:
Задача минимизации суммы квадратичных ошибок является классической. Как будет показано в п. 5.8.4, она может быть решена методом градиентного анализа. Простое решение в замкнутой форме можно также получить, образуя градиент
и полагая его равным нулю. Отсюда получается необходимое условие
и задача решения уравнения
где матрица размера
называется псевдообращением матрицы У. Заметим, что если матрица У квадратная и невырожденная, псевдообращение совпадаете обычным обращением. Следует также отметить, что
можно показать, что данный предел всегда существует, и Решение с наименьшей квадратичной ошибкой зависит от вектора допуска b, и будет показано, что различные способы выбора b приводят к различным свойствам получаемого решения. Если вектор b задан произвольно, то нет оснований считать, что в случае линейно разделяемых множеств решение с наименьшей квадратичной ошибкой даст разделяющий вектор. Однако можно надеяться, что в случае как разделяемых, так и неразделяемых множеств в результате минимизации функции критерия квадратичной ошибки может быть получена нужная разделяющая функция. Теперь перейдем к исследованию двух свойств решения, подтверждающих данное утверждение. 5.8.2. СВЯЗЬ С ЛИНЕЙНЫМ ДИСКРИМИНАНТОМ ФИШЕРАВ данном пункте будет показано, что при соответствующем выборе вектора b разделяющая функция
где и является вектор-столбцом из
и
Можно показать, что при определенном выборе b обнаруживается связь между решением по методу наименьшей квадратичной ошибки и линейным дискриминантом Фишера. Доказательство начнем, записав соотношение (32) для а с использованием разложенных матриц:
Определяя выборочное среднее
можно в результате перемножения матриц, входящих в (36), получить следующее выражение:
Полученное выражение может рассматриваться как пара уравнений, причем из первого можно выразить
где
Поскольку направление вектора следующее выражение:
где a — некоторая скалярная величина. В этом случае соотношение (40) дает
что, за исключением скалярного коэффициента, идентично решению для случая линейного дискриминанта Фишера. Помимо этого, получаем величину порога 5.8.3. АСИМПТОТИЧЕСКОЕ ПРИБЛИЖЕНИЕ К ОПТИМАЛЬНОМУ ДИСКРИМИНАНТУДругое свойство решения по методу наименьшей квадратичной ошибки, говорящее в его пользу, состоит в том, что при условии
Чтобы продемонстрировать данное утверждение, следует предположить, что выборки взяты независимо в соответствии с вероятностным законом
Решение по методу наименьшей квадратичной ошибки с использованием расширенного вектора у дает разложение в ряд функции
то нашей задачей будет показать, что величина Доказательство упростится при условии сохранения различия между выборками класса 1 и класса 2. Исходя из ненормированных данных, функцию критерия
Таким образом, в соответствии с законом больших чисел при стремлении функции J (а), имеющей вид
где
и
Теперь, если мы из соотношения (42) определим
то получим
Второй член данной суммы не зависит от весового вектора а. Отсюда следует, что а, которое минимизирует Данный результат позволяет глубже проникнуть в суть процедуры, обеспечивающей решение по методу наименьшей квадратичной ошибки. Аппроксимируя
|
1 |
Оглавление
|