Главная > Распознавание образов и анализ сцен
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.7. НОРМАЛЬНАЯ ПЛОТНОСТЬ

Структура байесовского классификатора определяется в основном типом условных плотностей Из множества исследованных функций плотности наибольшее внимание было уделено многомерной нормальной плотности распределения. Следует признать, что это вызвано в основном удобством ее аналитического вида. Вместе с тем многомерная нормальная плотность распределения дает подходящую модель для одного важного случая, а именно когда значения векторов признаков х для данного класса представляются непрерывнозначными, слегка искаженными версиями единственного типичного вектора, или вектора-прототипа, . Именно этого ожидают, когда классификатор выбирается так, чтобы выделять те признаки, которые, будучи различными для образов, принадлежащих различным классам, были бы, возможно, более схожи для образов из одного и того же класса. В данном разделе приводится краткое описание свойств многомерной нормальной плотности распределения, причем особое внимание уделяется тем из них, которые представляют наибольший интерес для задач классификации.

2.7.1. ОДНОМЕРНАЯ НОРМАЛЬНАЯ ПЛОТНОСТЬ

Рассмотрим сначала одномерную нормальную функцию плотности

для которой

и

Одномерная нормальная плотность распределения полностью определяется двумя параметрами — средним значением и дисперсией Для простоты уравнение (20) часто записывается в виде , что означает, что величина х распределена нормально со средним значением и дисперсией Значения нормально распределенной величины группируются около ее среднего значения с разбросом, пропорциональным стандартному отклонению а; при испытаниях примерно 95% значений нормально распределенной величины будет попадать в интервал

2.7.2. МНОГОМЕРНАЯ НОРМАЛЬНАЯ ПЛОТНОСТЬ

Многомерная нормальная плотность распределения в общем виде представляется выражением

где х есть -компонентный вектор-столбец, есть -компонентный вектор среднего значения, — ковариационная матрица размера транспонированный вектор матрица, обратная , а — детерминант матрицы . Для простоты выражение (23) часто записывается сокращенно в виде Формально можно написать

и

где ожидаемое значение вектора или матрицы находится поэлементным вычислением математических ожиданий компонент. Выражаясь конкретнее, если есть компонента есть компонента есть компонента , то получаем

и

Ковариационная матрица всегда симметрична и положительно полуопределена. Ограничимся рассмотрением случаев, когда положительно определена, так что ее детерминант строго положителен . Диагональный элемент есть дисперсия а недиагональный элемент есть ковариация Если статистически независимы, то Если все недиагональные элементы равны нулю, то сводится к произведению одномерных нормальных плотностей компонент вектора х.

Нетрудно показать, что любая линейная комбинация нормально распределенных случайных величин также распределена нормально. В частности, если А есть матрица размера есть -компонентный вектор, то . В частном случае, если А есть вектор единичной длины а, то величина является скаляром, представляющим проекцию вектора х на направление а. Таким образом, есть дисперсия проекции х на а. Вообще знание ковариационной матрицы дает возможность вычислить дисперсию вдоль любого направления.

Многомерная нормальная плотность распределения полностью определяется параметрами — элементами вектора среднего значения и независимыми элементами ковариационной матрицы . Выборки нормально распределенной случайной величины имеют тенденцию попадать в одну область или кластер (рис. 2.7). Центр кластера определяется вектором среднего значения, а форма — ковариационной матрицей. Из соотношения (23) следует, что точки постоянной плотности образуют гиперэллипсоиды, для которых квадратичная форма постоянна. Главные оси этих гиперэллипсоидов задаются собственными векторами , причем длины осей определяются собственными значениями. Величину

иногда называют квадратичным махаланобисовым расстоянием от х до . Линии постоянной плотности, таким образом, представляют собой гиперэллипсоиды постоянного махаланобисова расстояния до Объем этих гиперэллипсоидов служит мерой разброса выборок относительно среднего значения. Можно показать, что объем гиперэллипсоида, соответствующего махаланобисову расстоянию , равен

(см. скан)

Рис. 2.7. Представление нормальной плотности а — в виде функции двух переменных, б — на диаграмме разброса.

где есть объем -мерной единичной гиперсферы, равный

Таким образом, при заданной размерности разброс выборок изменяется пропорционально величине

1
Оглавление
email@scask.ru