Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Методы исследования нелинейных систем.Общим методом исследования устойчивости нелинейных систем является прямой метод Ляпунова. В его основе лежит теорема Ляпунова об устойчивости нелинейных систем. В качестве аппарата исследования используется так называемая функция Ляпунова, представляющая собой знако-определенную функцию координат системы, имеющую также знако-определенную производную по времени. Применение этого метода ограничивается его сложностью. Более простым методом расчета устойчивости нелинейных систем является метод, разработанный румынским ученым В. М. Поповым. Однако он пригоден для некоторых частных случаев. Процессы в нелинейной системе могут быть исследованы на основе кусочно-линейной аппроксимации. В этом случае нелинейные характеристики отдельных звеньев разбивают на ряд линейных участков, в пределах которых задача оказывается линейной и может быть решена достаточно просто. На границах участков необходимо произвести «сшивание» отдельных кусков процесса в единый процесс. Метод может применяться, если число участков, на которые разбивается нелинейная характеристика, невелико. Это имеет, например, место для релейных характеристик (см. рис. 5.1). При большом числе участков метод оказывается слишком громоздким. Однако использование ЭВМ позволяет преодолеть эту трудность и с успехом рассчитывать процессы в нелинейных системах при любых нелинейных характеристиках и вообще при наличии нелинейных зависимостей произвольного вида. Метод фазового пространства в принципе позволяет исследовать системы с нелинейностями произвольного вида, а также с несколькими иелинейностями. При этом в фазовом пространстве строят так называемый фазовый портрет процессов, протекающих (в нелинейной системе. По виду фазового портрета можно судить об устойчивости, возможности возникновения автоколебаний, точности в установившемся режиме. Однако размерность фазового пространства равка порядку дифференциального уравнения нелинейной системы. Это затрудняет использование метода для исследования систем, описываемых дифференциальным уравнением выше второго порядка. В случае дифференциального уравнения второго порядка фазовое пространство представляет собой фазовую плоскость, и этот метод может быть с успехом применен [4]. Для анализа случайных процессов в нелинейных автоматических системах можно применять математический аппарат теории марковских случайных процессов. Однако сложность метода и возможность решения уравнения Фоккера — Планка, которое требуется при анализе, только для уравнений первого и в некоторых случаях второго порядка, ограничивает его использование [13]. Все перечисленные методы относятся к числу точных. Их сложность и ограниченность применения привели к разработке приближенных, но более простых методов исследования нелинейных систем. Приближенные методы позволяют во многих случаях достаточно просто получить прозрачные и легко обозримые результаты анализа нелинейных систем [41. Метод гармонической линеаризации основан на замене нелинейного элемента его линейным эквивалентом, причем эквивалентность достигается для некоторого движения системы, близкого к гармоническому. Это позволяет достаточно просто исследовать возможность возникновения автоколебаний в системе. Однако метод может быть применен и для исследования переходных процессов [4]. Метод статистической линеаризации также основан на замене нелинейного элемента его линейным эквивалентом, но при движении системы под действием случайных возмущений. Метод позволяет сравнительно просто исследовать поведение нелинейной системы при случайных воздействиях и найти некоторые статистические характеристики.
|
1 |
Оглавление
|