Главная > Радиоавтоматика (В. А. Бесекерский)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Критерий устойчивости Гурвица.

Критерий устойчивости Гурвицг относится к числу алгебраических критериев, т. е. критериев, сформулированных в виде некоторых алгебраических формул. Критерий Гурвица приведем без доказательства. Составим из коэффициентов характеристического уравнения замкнутой автоматической системы (1.12) квадратную матрицу, пользуясь следующим правилом.

По главной диагонали матрицы записывают коэффициенты уравнения от до Затем каждый столбец матрицы заполняют коэффициентами этого же уравнения: вверх — в порядке возрастания индекса коэффициентов, вниз — в порядке убывания. В тех местах каждого столбца, где индекс оказывается отрицательным или превышает записывают нуль. Таким образом, матрица имеет вид

Затем из элементов этой матрицы, расположенных симметрично относительно главной диагонали, составляют определители Гурвица:

Критерий Гурвица формулируется следующим образом. Для устойчивости системы с характеристическим уравнением (1.12) необходимо

и достаточно, чтобы при все определителей Гурвица, составленных из коэффициентов этого уравнения, были положительны, т. е. чтобы

Фактически при определении устойчивости системы необходимо вычислить не определителя, поскольку в силу необходимого условия устойчивости, а так как последний столбец определителя содержит лишь один отличный от нуля элемент причем 0.

В качестве примера рассмотрим условия устойчивости системы АСН (см. § 1.3), дифференциальное уравнение которой имеет вид (1.6):

чему соответствует характеристическое уравнение

где

Поскольку необходимое условие устойчивости выполнено, т. е. все коэффициенты характеристического уравнения положительны, система может быть устойчивой. Условие устойчивости, т. е. значения параметров системы, при которых система будет устойчивой, определим посредством критерия Гурвица. Из матрицы (2.2) для данного случая получаем

Таким образом, для рассматриваемой системы имеем лишь одно условие устойчивости т. е. или

Подставляя значения коэффициентов, получаем

При проектировании замкнутой автоматической системы постоянные времени ее звеньев, в частности постоянная времени исполнительного двигателя и постоянная времени Ту усилителя, являются заданными. Они определяются свойствами соответствующих элементов автоматики, входящих в состав системы, и не могут быть изменены в процессе проектирования системы. Значение же коэффициента (см. § 1.3) можно изменять в широких пределах, регулируя коэффициент передачи усилителя. Поэтому найдем допустимое по условию (2.4) значение при заданных и :

Из (2.5) видно, что увеличение постоянных времени отрицательно сказывается на устойчивости системы, так как при этом снижается предельное значение коэффициента передачи системы при котором система еще остается устойчивой.

1
Оглавление
email@scask.ru