Главная > Физика. 8 класс
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 14. МГНОВЕННАЯ СКОРОСТЬ

Мы сделали попытку свести неравномерное движение к равномерному и для этого ввели среднюю скорость движения. Но это нам не помогло: зная среднюю скорость, нельзя решать самую главную задачу механики — определять положение тела в любой момент времени. Можно ли каким-нибудь другим способом свести неравномерное движение к равномерному?

Этого, оказывается, сделать нельзя, потому что механическое движение — это процесс непрерывный. Непрерывность движения состоит в том, что если, например, тело (или точка), двигаясь прямолинейно с возрастающей скоростью, перешло из точки А в точку В, то оно непременно должно побывать во всех промежуточных точках, лежащих между А и В, без всяких пропусков. Но это еще не все. Предположим, что, подходя к точке А, тело двигалось равномерно со скоростью 5 м/сек, а после прохождения точки В оно двигалось тоже равномерно, но со скоростью 30 м/сек. При этом на прохождение участка АВ тело потратило 15 сек. Следовательно, на отрезке АВ скорость тела за 15 сек изменилась на 25 м/сек. Но так же как тело при своем движении не могло миновать ни одну из точек на его пути, его скорость должна была принять все значения скорости между 5 и 30 м/сек. Тоже без всяких пропусков! В этом и состоит непрерывность механического движения: ни координаты тела, ни его скорость не могут изменяться скачками. Отсюда можно сделать очень важный вывод. Различных значений скорости в интервале от 5 до 30 м/сек имеется бесчисленное множество (в математике говорят, бесконечно много значений). Но между точками А и В имеется и бесчисленное множество (бесконечно много!) точек, а 15-секундный интервал времени, в течение которого тело переместилось из точки А в точку В, состоит из бесчисленного множества промежутков времени (время тоже течет без скачков!).

Следовательно, в каждой точке траектории движения и в каждый момент времени тело обладало определенной скоростью.

Скорость, которую имеет тело в данный момент времени и в данной точке траектории, называют мгновенной скоростью.

При равномерном прямолинейном движении скорость тела определяется отношением его перемещения к промежутку времени, за который совершено это перемещение. Что же означает скорость в данной точке или в данный момент времени?

Допустим, что некоторое тело (как всегда, мы в действительности имеем в виду какую-то определенную точку этого тела) движется прямолинейно, но не равномерно. Как вычислить его мгновенную скорость в некоторой точке А его траектории? Выделим небольшом участок на этой траектории, включающий точку А (рис. 38). Малое перемещение тела на этом участке обозначим через

Рис. 38

а малый промежуток времени, в течение которого оно совершено, через Разделив на мы получим среднюю скорость на этом участке: ведь скорость изменяется непрерывно и в разных местах участка 1 она различна.

Уменьшим теперь длину участка 1. Выберем участок 2 (см. рис. 38), тоже включающий в себя точку А. На этом меньшем участке перемещение равно и проходит его тело за промежуток времени Ясно, что на участке 2 скорость тела успевает измениться на меньшую величину. Но отношение дает нам и для этого меньшего участка все же среднюю скорость. Еще меньше изменение скорости на протяжении участка 3 (также включающего в себя точку А), меньшего, чем участки 1 и 2, хотя, разделив перемещение на промежуток времени мы опять получим среднюю скорость на этом малом участке траектории. Будем постепенно уменьшать длину участка, а вместе с ним и промежуток времени, за который тело проходит этот участок. В конце концов мы стянем участок траектории, прилегающей к точке А, всамую точку А, а промежуток времени — в момент времени. Тогда-то средняя скорость и станет мгновенной скоростью, потому что на достаточно малом участке изменение скорости будет настолько мало, что его можно не учитывать, значит, можно считать, что скорость не изменяется.

Мгновенная скорость, или скорость в данной точке, равна отношению достаточно малого перемещения на малом участке траектории, прилегающей к этой точке, к малому промежутку времени, в течение которого совершается это перемещение.

Понятно, что скорость равномерного прямолинейного движения — это одновременно его мгновенная и средняя скорость.

Мгновенная скорость — величина векторная. Ее направленна совпадает с направлением перемещения (движения) в данной точка Прием, к которому мы прибегли, чтобы пояснить смысл

мгновенной скорости, состоит, таким образом, в следующем. Участок траектории и время, в течение которого он проходится, мы мысленно постепенно уменьшаем до тех пор, пока участок уже нельзя отличить от точки, промежуток времени — от момента времени, а неравномерное движение — от равномерного. Таким приемом всегда пользуются, когда изучают явления, в которых играют роль какие-нибудь непрерывно изменяющиеся величины.

Нам остается теперь выяснить, что необходимо знать для нахождения мгновенной скорости тела в любой точке траектории и в любой момент времени.

1
Оглавление
email@scask.ru