Главная > Алгебра и теория чисел
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Предикаты.

Рассмотрим предложение

содержащее натуральные переменные

Это предложение не является высказыванием, так как о нем нельзя сказать, истинно оно или ложно. Оно называется предикатом или условием (на х и у). Приведем другие примеры предложений с переменными:

есть простое число;

есть четное число;

меньше у,

есть общий делитель у, z.

Будем считать, что допустимыми значениями переменных у и z являются натуральные числа. Если в предложениях заменить переменные их допустимыми значениями, то получатся высказывания, которые могут быть как истинными, так и ложными. Например,

2 есть простое число;

3 есть четное число;

5 меньше 7;

3 есть общий делитель 6 и 12.

ОПРЕДЕЛЕНИЕ. Предложения с переменными, дающие высказывания в результате замены свободных переменных их допустимыми значениями, называются предикатами.

Предложения могут служить примерами предикатов.

По числу входящих свободных переменных различают предикаты одноместные, двухместные, трехместные и т. д. Предикаты (2) и (3) — одноместные, предикаты (1) и (4) — двухместные, предикат (5) — трехместный. Высказывания будем считать нульместными предикатами.

Заменяя в одноместном предикате (2) переменную натуральными числами, будем получать высказывания:

0 есть простое число;

1 есть простое число;

2 есть простое число;

3 есть простое число и т. д.

Некоторые из них являются истинными. Таким образом, данный одноместный предикат выделяет среди натуральных чисел те, при подстановке которых вместо переменной получается истинное высказывание, и его можно рассматривать как условие на значения свободной переменной, входящей в предикат. В данном случае числа, удовлетворяющие этому условию, — простые.

Одноместный предикат можно рассматривать как условие на объекты данного вида; двухместный — как условие на пары объектов данного вида и т. д.

Предикаты можно задавать различными способами. В алгебре часто рассматривают предикаты, заданные с помощью уравнений, неравенств, а также систем уравнений или неравенств. Например, неравенство задает одноместный предикат, уравнение — двухместный, а система уравнений — трехместный у, z — рациональные переменные).

Обозначать предикаты будем большими буквами латинского алфавита (возможно, с нижними индексами) с указанием в скобках всех свободных переменных, входящих в этот предикат. Например, — обозначение двухместного предиката, — трехместного и — обозначение -местного предиката.

В дальнейшем мы будем говорить об истинностном значении произвольного предиката на том или ином наборе входящих в него свободных переменных, понимая под этим истинностное значение высказывания, которое получается в результате замены свободных переменных соответствующими им значениями из рассматриваемого набора.

Высказывание, которое получается при подстановке в предикат набора допустимых значений вместо его переменных, будем обозначать Если это высказывание истинное (ложное), говорят, что набор значений удовлетворяет (не удовлетворяет) предикату

Отметим, что следует различать предикаты, выражающие одно и то же условие, но имеющие переменные с различными допустимыми значениями. Например, предикат, заданный уравнением где — целочисленная переменная, следует отличать от предиката, заданного тем же уравнением, если при этом рассматривается как рациональная переменная. Первый предикат не принимает значений И ни при каких допустимых значениях а второй принимает значение И при допустимом значении переменной Таким образом, при задании предиката нужно указывать область допустимых значений переменных этого предиката.

Categories

1
Оглавление
email@scask.ru