Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 35. Очень вязкие жидкостиДля типичных жидкостей уравнения Навье—Стокса применимы до тех пор, пока периоды движения велики по сравнению с молекулярными временами. Это, однако, не относится к очень вязким жидкостям. Для таких жидкостей обычные гидродинамические уравнения становятся неприменимыми уже при гораздо больших периодах движения. Существуют вязкие жидкости, которые в течение достаточно малых (но в то же время больших по сравнению с молекулярными) промежутков времени ведут себя, как твердые тела (например, глицерин, канифоль). Аморфные твердые тела (например, стекло) можно рассматривать как предельный случай таких жидкостей с весьма большой вязкостью. Свойства этих жидкостей могут быть описаны следующим способом (предложенным Максвеллом). В течение малых промежутков времени они упруго деформируются. После прекращения деформации в них остаются напряжения сдвига, затухающие, однако, со временем, так что по истечении достаточно большого промежутка времени никаких внутренних напряжений в жидкости практически не остается. Пусть Соответственно таким «промежуточным» свойствам рассматриваемых жидкостей их можно характеризовать одновременно коэффициентом вязкости
В обратном предельном случае больших частот жидкость ведет себя, как твердое тело, и внутренние напряжения должны определяться по формулам теории упругости, т. е.
Это и есть искомое соотношение. Выведем, наконец, уравнение движения, качественно описывающее поведение рассматриваемых жидкостей. Для этого будем исходить из наиболее простого предположения о законе затухания внутренних напряжений (после прекращения движения); именно, будем считать, что оно происходит по простому экспоненциальному закону, чему соответствует уравнение
С другой стороны, в твердом теле было бы
Легко видеть, что уравнение
приводит к правильным результатам в обоих предельных случаях медленных и быстрых движений, а потому может служить интерполяционным уравнением для промежуточных случаев. Так, для периодического движения, когда
откуда
При
— обычное выражение для жидкости с вязкостью
|
1 |
Оглавление
|