Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА VI. МЕХАНИКА ЖИДКИХ КРИСТАЛЛОВ§ 36. Статические деформации нематиковЖидкие кристаллы представляют собой с макроскопической точки зрения анизотропную» текучую среду. Механика этих сред несет в себе черты, свойственные как обычным жидкостям v так и упругим средам, и в этом смысле занимает положение, промежуточное между гидродинамикой и теорией упругости. Существуют различные тины жидких кристаллов. Категорию нематических жидких кристаллов (или, как говорят для краткости, нематиков) составляют среды, которые в своем недеформированном состоянии однородны не только макро-, но и микроскопически; анизотропия среды связана только с анизотропной ориентацией молекул в пространстве (см. V, §§ 139, 140). Подавляющее большинство известных нематиков относится к простейшему их типу, в котором анизотропия полностью определяется заданием в каждой точке среды единичного вектора Таким образом, состояние нематической, среды описывается заданием в каждой ее точке наряду с обычными для жидкости величинами — плотности В равновесном состоянии неподвижный нематик, не находящийся под действием внешних сил (в том числе со стороны ограничивающих его стенок), однороден: во всем его объеме В этой главе мы будем относить все термодинамические величины к единице объема деформированного тела, а не к единице объема недеформированного, как в предыдущих главах. Определенная таким образом плотность свободной энергии F нематической среда складывается из свободной энергии недеформированного нематика
(см. V § 140); отметим, что для единичного вектора
поэтому последний член в (36,1) может быть записан также и в эквивалентной форме Энергия (36,1) играет в механике нематиков роль, аналогичную роли упругой энергии деформированного твердого тела, и именно ее существование придает этой механике некоторые черты теории упругости Три квадратичные комбинации производных в (36,1) независимы друг от друга: каждая из них может быть отлична от нуля при равных нулю двух других. Поэтому условие устойчивости недеформированного состояния требует положительности всех трех коэффициентов Упомянем, что деформации, в которых отлична от нуля лишь одна из величин Если директор Стенки, ограничивающие занимаемый жидкокристаллической средой объем, и даже ее свободная поверхность оказывают на среду ориентирующее воздействие (об этом будет говориться подробнее ниже). Поэтому уже само наличие граничных поверхностей приводит, вообще говоря, к деформированию неподвижной жидкокристаллической среды. Возникает вопрос о нахождении уравнений, определяющих эту деформацию; другими словами — об уравнениях, определяющих равновесное распределение Для этого исходим из общего термодинамического условия равновесия — минимальности полной свободной энергии тела, т. е. интеграла
Второй член — интеграл по поверхности тела — существен лишь для нахождения граничных условий. Полагая пока
где Н — вектор с компонентами
Величина Н играет роль поля, стремящегося «выпрямить» направления Уравнение же (36,3) принимает вид
введя вектор h, для которого Найдем явное выражение молекулярного поля, соответствующего свободной энергии (36,1). Для проведения дифференцирования по
(где
В результате получим для тензора
Дальнейшее дифференцирование, согласно определению (36,6), приводит к следующей довольно сложной формуле для молекулярного поля:
Граничные условия к уравнениям равновесия не могут быть установлены в общем виде: они зависят не только от упругой энергии (36,1), но и от конкретного рода взаимодействия жидкости с ограничивающей ее стенкой; эта поверхностная энергия должна была бы быть включена в полную свободную энергию, минимальность которой определяют условия равновесия. Фактически эти поверхностные силы обычно настолько велики, что именно они устанавливают направление Если граничная твердая поверхность анизотропна, то это направление оказывается вполне определенным (или одним из нескольких вполне определенных). Если же поверхность изотропна (сюда относится и случай свободной поверхности), то оказывается заданным лишь угол между В этой последней ситуации необходимо поставить дополнительное граничное условие. Оно устанавливается требованием обращения в нуль поверхностного интеграла в (36,4) для вариаций
откуда ввиду произвольности
или, направив ось z вдоль v:
Наконец, сделаем еще следующее замечание по поводу фигурирующих в (36,1) модулей упругости. Поскольку они введены как коэффициенты в свободной энергии, ими определяются изотермические деформации тела. Легко видеть, однако, что те же коэффициенты определяют в нематиках также и адиабатические деформации. Действительно, мы видели в § 6, что для твердого тела различие между изотермическими и адиабатическими модулями возникает в силу наличия в свободной энергии члена, линейного по тензору деформации. Для нематиков аналогичную роль мог бы играть член, линейный по производным Эти рассуждения можно сформулировать и несколько иначе: в отсутствие линейного члена квадратичная упругая энергия (36,1) является первой «малой поправкой» к термодинамическим величинам недеформированного тела; в силу «теоремы о малых добавках» (см. V, § 15), будучи выражена через соответствующие термодинамические переменные (температуру или энтропию), она одина кова для свободной энергии и для внутренней энергии.
|
1 |
Оглавление
|