Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 16. Кручение стержнейПерейдем теперь к изучению деформаций тонких стержней. Этот случай отличается от всех ранее рассматривавшихся тем, что вектор смещения Существует два типа деформаций стержней, могущих сопровождаться большим смещением отдельных частей стержня. Одним из них является изгиб стержня, а вторым — его кручение. С рассмотрения этого второго случая мы и начнем. Деформация кручения заключается в том, что в стержне, остающемся при этом прямым, каждое поперечное сечение поворачивается относительно ниже лежащих на некоторый угол. Если стержень длинный, то при слабом кручении достаточно удаленные друг от друга сечения могут повернуться на большой угол. Образующие боковой поверхности стержня, параллельные его оси, приобретают при кручении винтовую форму. Рассмотрим тонкий прямой стержень произвольного сечения. Выберем систему координат с осью z вдоль оси стержня и началом координат где-нибудь внутри него. Введем угол кручения
Рассмотрим небольшую область длины стержня вблизи начала координат и определим смещения и точек стержня в этой области. В качестве несмещенного выберем поперечное сечение стержня в координатной плоскости х, у. Как известно, при повороте радиус-вектора
где
При кручении стержня его точки испытывают, вообще говоря, также и смещение вдоль оси
где Зная и, можно найти компоненты тензора деформации. Поскольку и в рассматриваемой области мало, то можно воспользоваться формулой
Обращаем внимание на то, что Для компонент тензора напряжений находим
(здесь удобнее пользоваться модулем сдвига (а вместо Е и о). Поскольку отличны от нуля только
Подставив сюда (16,6), мы найдем, что функция кручения должна удовлетворять уравнению
где А — двухмерный оператор Лапласа. Несколько более удобно, однако, пользоваться другой вспомогательной функцией
для этой функции получаются более удобные граничные условия на контуре сечения стержня (см. ниже). Сравнив (16,9) с (16,6), получим
Дифференцируя первое равенство по у, второе по х и вычитая одно из другого, получим для функции
Для определения граничных условий на поверхности стержня замечаем, что благодаря малой толщине стержня действующие на его боковую поверхность внешние силы малы по сравнению с возникающими в стержне внутренними напряжениями и потому могут быть положены (при отыскании граничных условий) равными нулю. Это обстоятельство в точности аналогично тому, что мы имели при рассмотрении изгиба тонких пластинок. Таким образом, на боковой поверхности стержня должно быть
Подставляя сюда (16,9), получаем
Но компоненты вектора нормали к плоскому контуру (контуру сечения стержня) равны
откуда
Рис. 13 Поскольку в определения (16,9) входят только производные от функции
В случае же многосвязного контура С помощью соотношений (16,10) имеем поэтому
или
где Определим свободную энергию подвергнутого кручению стержня. Для энергии единицы объема имеем
и, подставляя сюда (16,9):
где V означает двухмерный градиент. Энергия кручения, отнесенная к единице длины стержня, получится отсюда интегрированием по площади поперечного сечения, т. е. равна
Величину С называют крутильной жесткостью стержня. Полная упругая энергия стержня равна интегралу
взятому по его длине. Написав
и преобразуя интеграл от первого члена в интеграл по линии контура сечения стержня, получим
Если контур сечения односвязен, то ввиду граничного условия
Для многосвязной же границы (рис. 13), положив
(следует помнить, что при интегрировании в первом члене в (16,15) контур Рассмотрим наиболее обычный случай кручения, когда один из концов стержня закреплен неподвижно, а внешние силы приложены только к поверхности другого его конца. Эти силы таковы, что производят только кручение стержня без какой бы то ни было другой его деформации, например изгиба. Другими словами, они составляют некоторую пару сил, закручивающую стержень вокруг его оси. Момент этой пары обозначим посредством М. Естественно ожидать, что в таком случае угол кручения
или, интегрируя по частям,
В последнем члене слева берется разность значений на пределах интегрирования, т. е. на концах стержня. Один из этих концов, скажем нижний, закреплен так, что на нем
Во втором члене берется его значение на верхнем пределе. В интег грале по
Таким образом, угол кручения постоянен вдоль всей длины стержня. Полный угол поворота верхнего основания относительно нижнего равен поэтому просто произведению
|
1 |
Оглавление
|