Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА V. ТЕПЛОПРОВОДНОСТЬ И ВЯЗКОСТЬ ТВЕРДЫХ ТЕЛ§ 31. Уравнение теплопроводности в твердых телахНеравномерная нагретость твердой среды не приводит к возникновению в ней конвекции, как это обычно имеет место в жидкостях. Поэтому перенос тепла осуществляется здесь одной только теплопроводностью. В связи с этим процессы теплопроводности в твердых телах описываются сравнительно более простыми уравнениями, чем в жидкостях, где они осложняются конвекцией. Уравнение теплопроводности в твердой среде может быть выведено непосредственно из закона сохранения энергии, выраженного в виде уравнения непрерывности для количества тепла. Количество тепла, поглощаемое в единицу времени в единице объема тела, равно
Согласно формуле (6,4) энтропия может быть написана в виде
где а — температурный коэффициент расширения,
Согласно известной термодинамической формуле имеем
Производную от
(производная В результате получим уравнение теплопроводности в следующем виде:
Для того чтобы получить полную систему уравнений, надо присоединить сюда еще уравнение, определяющее деформацию неравномерно нагретого тела. Этим уравнением является уравнение равновесия (7,8)
Из уравнения (31,3) может быть определена, в принципе, деформация тела при произвольно заданном распределении температуры. Подстановка полученного таким образом для Рассмотрим, например, теплопроводность в неограниченной твердой среде с распределением температуры, удовлетворяющим только одному условию: на бесконечности температура стремится к постоянному пределу
Подставляя это выражение в (31,2), получим уравнение
типа простого уравнения теплопроводности. Уравнением такого же тина описывается и распределение температуры вдоль длины тонкого прямого стержня, если хотя бы один из его концов не закреплен. Распределение температуры вдоль каждого из поперечных сечений стержня можно считать постоянным, так что Т будет функцией только от координаты х вдоль его длины (и от времени). Тепловое расширение такого стержня приводит только к изменению его длины без изменения прямолинейной формы и без возникновения внутренних напряжений в нем. Ясно поэтому, что производная
Надо, впрочем, отметить, что с практически достаточной точностью распределение температуры в твердом теле может всегда определяться простым уравнением теплопроводности. Дело в том, что второй член в левой стороне уравнения (31,2) представляет собой поправку порядка
где
|
1 |
Оглавление
|