Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 34. Поглощение звука в твердых телахКоэффициент поглощения звука в твердых телах может быть вычислен вполне аналогично тому, как это делается для жидкостей (см. VI, § 79). Произведем здесь соответствующие вычисления для изотропного тела. Диссипация механической энергии в теле дается суммой
где первый член обусловлен теплопроводностью, а второй — вязкостью. Воспользовавшись выражением (33,5), имеем, таким образом, формулу
Для вычисления градиента температуры пользуемся тем, что звуковые колебания в первом приближении адиабатичны. С помощью выражения (6,4) для энтропии пишем условие адиабатичности в виде
где
(производная от энтропии берется при Таким образом, имеем
Воспользовавшись также соотношениями
переписываем это выражение в виде
Рассмотрим сначала поглощение поперечных упругих волн. Теплопроводность вообще не может привести к поглощению таких волн (в рассматриваемом приближении). Действительно, в поперечной волне
и из компонент тензора деформации отличны от нуля только
Будем относить диссипацию энергии к единице объема тела; для среднего (по времени) значения этой величины получаем из (34,1)
где мы подставили
Коэффициент поглощения звука определяется как отношение средней диссипации энергии к удвоенному среднему потоку энергии в волне; эта величина определяет закон изменения амплитуды волны с расстоянием, убывающей пропорционально
В продольной звуковой волне
Эти формулы относятся, строго говоря, лишь к полностью изотропным аморфным телам. По порядку величины они, однако, Своеобразные особенности представляет поглощение звука в поликристаллических телах. Если длина волны звука к мала по сравнению с размерами а отдельных кристаллитов, то в каждом кристаллите звук поглощается так же, как он поглощался бы в большом кристалле, и коэффициент пбглощения пропорционален Если же Рассмотрим два различных предельных случая. Время, в течение которого происходит выравнивание температур на расстояниях Пусть Т — возникающие в кристаллите разности температур, а
Количество же тепла, выделяющееся при деформации, — порядка величины
Температура испытывает изменение
(оценивая порядки величин, мы, естественно, не отличаем различные скорости звука с). С помощью этих результатов вычисляем диссипацию энергии в единице объема:
и, разделив ее
(С. Zener, 1938). Сравнивая это выражение с обычным выражением (34,3) и (34,4), мы можем сказать, что в рассматриваемом случае поглощение звука поликристаллическим телом происходит так, как если бы оно обладало вязкостью
гораздо большей, чем истинная вязкость составляющих его кристаллитов. Далее, рассмотрим обратный предельный случай, когда В результате возникают «распространяющиеся» от границ внутрь кристаллита «температурные волны», затухающие на расстоянии
В рассматриваемом случае
Подставив для
Он оказывается пропорциональным корню из частоты Таким образом, Аналогичные соображения относятся и к затуханию поперечных волн в тонких стержнях и пластинках. Если h есть толщина стержня или пластинки, то при
|
1 |
Оглавление
|