Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
6. РегрессияКак уже отмечалось в примере 2, гипотезы о специальных значениях коэффициентов регрессии
являются частными случаями общей линейной гипотезы. Гипотезы Пространство
кроме того, сумма квадратов в знаменателе для всех трех гипотез равна
Числитель статистики, по которой строится критерий, равен При гипотезе
Так как при этом
то гипотеза Для которой критическая область (17) имеет вид
Как было показано ранее, при гипотезе
Так как при этом следовательно, критическая область определяется неравенством
В примере 3 было указано, что при гипотезе
так что числитель в формуле (7) равен
Более общая гипотеза
Соответствующие доверительные множества для Простую модель регрессии (32) можно обобщать во многих направлениях; например, средние могут быть полиномами от Пример 6. Несколько проблем возникает при наличии более чем одной линии регрессии. Допустим, что случайные величины
Гипотеза о том, что эти линии регрессии имеют один и тот же наклон
может встретиться, например, при проверке равенства нескольких скоростей роста. Пространство параметров Па имеет размерность
При гипотезе
Так как
и
то критическая область (15) равна
где левая часть при гипотезе
то параметр нецентральности указанного распределения при альтернативных значениях Пример 7. Модель регрессии (37) возникает при сравнении нескольких способов обработки при условии, что экспериментальные единицы считаются постоянными, а соответствующие эффекты
а гипотеза об отсутствии эффекта обработки принимает вид
Пространство
Минимизация суммы
где
Следовательно, гипотеза
где при гипотезе Гипотеза Пример 7 иллюстрирует важный класс ситуаций, в которых дисперсионный анализ (в нашем случае касающийся одинарной классификации) комбинируется с проблемой регрессии (в нашем случае — линейная регрессия на единственную «сопутствующую переменную»
|
1 |
Оглавление
|