Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
10. Пузырьковая модельМы рассмотрели модель системы, состоящей из квазисвободного электрона в плотной жидкости. Как уже было отмечено, такая модель пригодна лишь тогда, когда электрон слабо взаимодействует с атомом; однако это условие не сохраняется в случае жидкого гелия. Действительно, отталкивание электрон — атом оказывается в гелии настолько большим, что образование полости в жидкости может приводить к состояниям с более низкой свободной энергией, чем состояние квазисвободцого электрона, несмотря на резкое возрастание кинетической энергии при локализации электрона внутри полости. Пузырьковая модель электрона в жидком гелии обычно приписывается Фейнману, на подробно она была впервые описана Купером в работе [40]. Основная идея модели состоит в том, что достигается устойчивая конфигурация раствора в результате равновесия, которое наступает, с одной стороны, между отталкиванием электрона от всех окружающих атомов и, с другой стороны, между силами сжатия пузырька, возникающими из-за поверхностного натяжения. В первоначальной работе Купера [40] поверхностное натяжение было весьма приближенно подсчитано на основе микроскопического подхода. Недавно Левин и Сандерс [41а, б] придали пузырьковой модели более отчетливый вид. В вычислениях Сандерса использованы наблюдаемые значения поверхностного натяжения (вместо взятого из приближенной молекулярной модели), а также волновая функция электрона, соответствующая яме с определенной глубиной, подгоняемой под длину рассеяния. Диаметр пузырька оказался равным приблизительно 20 А, что вдвое превышает значение Купера. В результате соответствующего уменьшения кинетической энергии электрона внутри пузырька последний становится легко сжимаемым и изменяющим форму. Применим теперь формализм псевдопотенциала для описания локализованного избыточного электрона. Использование этого формализма дает возможность решить рассматриваемую задачу, в то время как прямое применение ССП-схемы пока, очевидно, невозможно. Гладкая волновая функция, отвечающая связанному состоянию, берется в виде
где
где
Б качестве первого приближения плотность
Возможны также дальнейшие уточнения при выборе функции плотности. Матричные элементы псевдопотенциала для различных значений
В табл. 12 приведены различные значения электронной энергии в жидком гелии; приведенные результаты сравниваются с энергией электрона в сферическом ящике с бесконечной кривизной. Таблица. 12. Электронные энергии локализованного состоянии в жидком гелии
Очевидно, что при плотности жидкого гелия простая модель частицы в ящике является удовлетворительной, поскольку просачивание нлотности избыточного электрона из полости мало. Следует, однако, отметить, что для более низких плотностей жидкости модель электрона в «ящике» становится непригодной, поскольку нросачивание заряда из пузырька становится существенным. Полная энергия системы Е выражается в виде суммы энергии электрона и энергии, необходимой для образования пузырька Е,
В случае достаточно больших полостей при постоянном давлении Е может быть представлена в виде суммы поверхностной и объемной работ
где у — поверхностное натяжение,
Для жидкого гелия при температуре 4,2° К и давлении 1 атм получаем Независимые свидетельства в пользу сделанных заключений следуют из данных по аннигиляции позитрония [42]. Большие времена жизни ортопозитрония в жидком гелии можно интерпретировать как следствие близкодействующего отталкивания электрон—гелий, вызывающего образование пузырька в жидкости [42]. В описанной выше трактовке не учитываются поляризационные эффекты. Следует ожидать, что в случае гелия это не ведет к ошибке, большей 10%. В случае жидких аргона, криптона и ксенона вклад поляризационного потенциала подавляет отталкивательнуго часть потенциала (т. е. длины рассеяния отрицательны). В последних случаях избыточный электрон должен хорошо описываться плоской волной. Высокие подвижности электрона в жидких аргоне и криптоне, установленные недавно Снайдерсом, Райсом и Мейером, согласуются с картиной рассеяния квазисвободного электрона. В заключение мы должны рассмотреть переходы из состояния квазисвободной плоской волны в локализованное состояние электрона в гелии. Сандерс и Левин наблюдали [41], что, когда плотность гелия в газовой фазе возрастает при 4,2° К, в области ЛИТЕРАТУРА(см. скан) (см. скан)
|
1 |
Оглавление
|