Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Обсуждаются физическая картина движения энергии вдоль линий передач и основные характеристики линий передач. Вследствие граничного условия непрерывности тангенциальных составляющих напряженности электрического поля точно такое же поле существует вне проводника около его поверхности. Вычислим по формуле (59.9) поток электромагнитной энергии сквозь замкнутую поверхность цилиндра, боковая поверхность которого совпадает с поверхностью проводника длиной Напряженность магнитного поля на поверхности проводника направлена по касательной к поверхности в плоскости, перпендикулярной оси проводника (и вектору j) (рис. 248), и равна Таким образом, вектор Пойнтинга (59.7) направлен по радиусу к оси проводника и равен Это означает, что электромагнитная энергия втекает в проводник из окружающего пространства через его боковую поверхность. Поток энергии через основания цилиндра отсутствует. На участке проводника длиной По закону Джоуля-Ленца на длине Сравнение (60.4) с (60.5) показывает, что вся выделяемая в проводнике при прохождении электрического тока в виде теплоты энергия поступает из окружающего пространства через боковую поверхность проводника. Следовательно, передаваемая с помошью электрического тока энергия движется в окружающем проводник пространстве. Провода играют роль направляючих, вдоль которых движется электромагнитная энергия, причем плотность потока энергии в любой точке пространства определяется вектором Пойнтинга. где которая позволяет найти значение постоянной Напряженность магнитного поля в кабеле равна как это сразу следует из закона полного тока, с учетом аксиальной симметрии поля. Из (60.9) и (60.10) получаем Эта величина представляет собой плотность потока электромагнитной энергии, направленного параллельно оси кабеля в пространстве между жилой и оболочкой. Вне кабеля, а также в центральной жиле и в оболочке никакого потока энергии нет, поскольку там вообще отсутствует электрическое поле при принятом допущении об отсутствии сопротивления. В 1 с времени через поперечное сечение кабеля проходит электромагнитная энергия При силе тока Сравнение (60.12) с (60.13) показывает, что вся используемая потребителем энергия движется вдоль кабеля в пространстве между жилой и оболочкой в виде электромагнитной энергии. Ничего не изменяется в принципиальном отношении и для переменного тока не очень высокой частоты. Если ток в кабеле меняет направление на обратное, то составляющие В других линиях передачи в принципиальном смысле картина движения энергии не изменяется, лишь усложняется конфигурация полей и пути, по которым движется энергия. и параллельно включенным импедансом Пусть к началу участка линии Применим правило Кирхгофа для внешнего контура всего участка, взяв в качестве положительного направления обход против часовой стрелки: Разделив (60.16) на Если Аналогично, правило Кирхгофа, применяемое к левому контуру, включающему импеданс откуда при Дифференцируя обе части (60.18) по Аналогично, дифференцирование (60.20) по х и использование (60.18) приводит к уравнению для силы тока: Уравнения (60.21) и (60.22) называются уравненнями линии передачи. причем для Аналогичный вид имеет также и решение уравнения (60.22): Подставляя решения (60.23) и (60.25) в (60.18) и (60.20), находим связь между постоянными где или Отсюда следует, что Следовательно, входной импеданс линии равен характеристическому: Это означает, что если линия оканчивается нагрузкой с характеристическим импедансом, то ее входной импеданс равен характеристическому, независимо от длины, т.е. в этом случае ток передается по линии без изменения отношения иапрясения к силе тока. является действительной величиной, т. е. сопротивлением, и называется характеристическим сопротивлением. Характеристическое сопротивление зависит от формы и размеров проводников, от расстояния между ними и других факторов, от которых зависят емкость и индуктивность участков линии. Например, характеристическое сопротивление параллельных цилиндрических проводников радиусом Поэтому, взяв зависимость величин от времени в виде Формула (60.35) описывает волну с частотой Напомним, что в этой формуле и поэтому скорость распространения волны равна Рассмотрим в качестве примера закороченную на конце линию передачи, т. е. когда где для упроцения написания формул введены обозначения: Поэтому выражения (60.23) и (60.25) для напряжения и силы тока вдоль линии передачи записываются следующим образом:
|
1 |
Оглавление
|