Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
7.7. Линейный отклик квантовой системы на внешнее возмущениеФизические задачи связаны с определением неизвестных свойств системы. Для этого воздействуют на систему внешним агентом и наблюдают реакцию системы. Иными словами, наблюдатель задает вопрос системе, а система отвечает. Исходя из такой общей постановки, был развит формализм линейного отклика. Этот формализм Кубо впервые применил к теории необратимых процессов. Его цель состояла в изучении явлений переноса, например эффектов, обусловленных действием на равновесную систему внешних сил, которые вызывают отклонение системы от равновесия и появление тепло- и электропроводности или иной реакции на возмущение. В данном разделе мы дадим краткое введение в этот формализм. Пусть на квантовую систему, описываемую матрицей плотности
при
Его можно получить, преобразовав (2.4.43) обратно в представление Шредингера с помощью (2.4.25) и (2.4.37). В этом приближении изменение среднего значения равно
Величину Предположим, что
где
при этом мы использовали циклическую инвариантность следа и ввели величину
Если ввести функцию Грина
где
Выражение (7.7.8) показывает, что влияние внешнего возмущения на среднее значение наблюдаемых можно описать с помощью функций Грина, связывающих наблюдаемую величину с возмущением. Смысл функции Грина можно выяснить, если рассмотреть единичный импульс в момент
Таким образом, функция Грина Равенство (7.7.8) называется формулой Кубо для линейного отклика системы. Важно подчеркнуть, что эта формула выражает неравновесные свойства системы через средние по равновесным состояниям. Можно также определить нелинейный отклик системы на внешнее воздействие. Однако функции Грина в этом случае уже не будут определяться свойствами невозмущенной системы. Рассмотрим частный случай периодического возмущения
где
где
Сравнивая (7.7.11) и (7.7.12), получаем
Это формула Кубо для обобщенной восприимчивости. Выведенные здесь соотношения можно использовать в качестве отправной точки при описании явлений переноса. При соответствующих условиях можно установить связь между формализмом отклика и теорией необратимых процессов Онсагера. Показано, что при достаточно слабом внешнем возмущении, когда допустимо ограничиться первым порядком теории возмущений, коэффициенты переноса можно вычислить, используя равновесную матрицу плотности. Например, электрическая проводимость непосредственно связана с откликом системы на внешнее поле, а этот отклик в свою очередь оказывается связанным с временными корреляционными функциями. Обсуждение затронутых вопросов выходит за рамки нашей книги. Подробное изложение теории и многочисленные применения читатель может найти в книге Зубарева (1971). (см. скан) (см. скан)
|
1 |
Оглавление
|