Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5.5.2. Эффекты деполяризации, вызванные тонкой и сверхгонкой структуройРассмотрим теперь случай, когда предположения, сделанные в разд. 5.4.2, применимы, но временное разрешение детектора недостаточно для наблюдения квантовых биении. Выражение (5.4.3а) необходимо теперь проинтегрировать по времени от 0 до
Проинтегрированные по времени элементы матрицы плотности, следовательно, имеют вид
Для синглет-синглетных переходов спинами приводит к потере ориентации и выстроенности. Кроме того, при Аналогичным образом, подставляя соответствующие коэффициенты возмущения (4.7.21) или (4.7.22) вместо Поучительно рассмотреть предельные случаи, когда ширина линий либо много больше, либо много меньше расщепления тонкой структуры
во всех членах выражений для параметров Стокса. Из (5.5.3) и условия ортогональности для
для всех значений
т. е. то же самое значение, что и в бесспнновом случае. Полученный результат легко понять, так как в рассматриваемом случае среднее время жизни возбужденных состояний
Таким образом, как указывалосьв разд. 5.5.1, основной вклад в параметры Стокса дают члены с интерференционными членами с
Так как Чтобы понять этот результат, вспомним, что в рассматриваемом случае на время жизни атома приходится много периодов прецессии. Поскольку мы интересуемся величинами, усредненными по интервалу времени (0, где Подведем итоги нашему рассмотрению. Если расщепление тонкой структуры сравнимо с шириной линий, нужно использовать выражение (5.5.3). Если ширина линии много больше расстояния между уровнями
|
1 |
Оглавление
|