Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
11. НЕАБЕЛЕВЫ КАЛИБРОВОЧНЫЕ ПОЛЯ. ПЕРЕСТАНОВОЧНЫЕ СООТНОШЕНИЯЮ. ШВИНГЕР J. Schwinger, Phys. Rev., 125, 1043 (1962) Для неабелевых векторных калибровочных полей возникает вопрос, означает ли с необходимостью калибровочная инвариантность существование физических частиц, лишенных массы. В качестве предварительного шага в изучении этого вопроса использовался принцип наименьшего действия для получения независимых динамических переменных таких калибровочных полей и перестановочных соотношений между ними. 1. ВведениеХорошо известно, что калибровочная инвариантность непосредственно связывает электромагнитные поля
Такие преобразования образуют абелеву группу, в которой калибровочная функция
описывает суперпозицию двух отдельных преобразований. Целочисленный спектр заряда связан с компактной структурой этой группы, имеющей топологию круга. Калибровочная инвариантность означает, что локальное сохранение заряда не является следствием уравнений движения полей, имеющих заряд, а представляет собой тождество, характерное для дифференциальных уравнений калибровочного поля. В этом обычном случае калибровочное поле не заключает в себе внутреннего свойства, с которым оно связано. Примером иного рода может служить гравитационное поле; оно связано с энергией и импульсом, в которые должны давать вклад все физические системы. С другой стороны, однако, требование общей координатной инвариантности совершенно аналогично требованию калибровочной инвариантности. Существует и промежуточная возможность, при которой калибровочное поле связано с некоторыми внутренними свойствами и несет скорее эти внутренние, а не пространственно-временные свойства. Тогда калибровочное поле при пространственно-временных преобразованиях сохраняет те же свойства, что и электромагнитное поле. На это указывают тензорные обозначения Калибровочные преобразования поля
Если эти преобразования образуют группу, то два последовательных инфинитиземальных преобразования, переставленные в обратном порядке, можно связать через другое такое преобразование. Это подразумевает существование перестановочных соотношений
причем постоянные
должны характеризовать структуру группы. Утверждение, что калибровочное поле также несет эти внутренние свойства, выражается бесконечно малым преобразованием
в котором используется удовлетворяют групповым перестановочным соотношениям
Но неоднородные преобразования
которое означает, что
Итак, матрицы
Тогда
откуда следует также, что
и искомый результат следует из линейной независимости Общее представление о пространстве внутренних свойств можно сформулировать в виде требования, что группа симметрии этого пространства замкнута в отличие от открытой группы Лоренца. Тогда все матричные представления можно сделать унитарными, так что матрицы
Это свойство в сочетании с условием
означает полную антисимметрию ряда из Концепция внутренней группы симметрии уже давно рассматривается как возможная основа для описания не пространственно-временных свойств физических частиц. Идея применения таких групп к калибровочным преобразованиям векторных полей привлекательна, но, по-видимому, приводит к трудностям сразу, как только принимается, что калибровочные поля дают соответствующие частицы, лишенные массы. Единственным известным примером физической частицы такого класса является фотон. Трудно согласиться, что это возражение будет преодолено полным уничтожением [2] калибровочной инвариантности, которая служит единственным обоснованием введения калибровочных полей. Но эту дилемму можно обойти. Автор уже отмечал, что если связь достаточно сильна, то калибровочно инвариантные системы электромагнитного, или, выражаясь более общо, абелева типа, не требуют наличия сопутствующих частиц с нулевой массой [3]. Вопрос заключается в том, существует ли аналогичная возможность для неабелевых групп. Для рассмотрения этой проблемы необходимо по крайней мере полное знание операторных свойств калибровочного поля, рассматриваемого в качестве физической квантовомеханической системы без ссылок на приближение слабой связи. Такие перестановочные соотношения неизвестны. И совершенно не тривиален вопрос о существовании внутренне не противоречивой квантовой теории поля вообще для систем допускающих неабелеву калибровочную группу. Но на этот вопрос нельзя ответить, пока не найден набор перестановочных соотношений, так как до этого момента остается неизвестной с необходимой полнотой природа операторного описания — необходимого элемента полноты. Цель данной статьи состоит в том, чтобы установить такие перестановочные соотношения, однако мы не будем касаться более трудного вопроса о согласованности.
|
1 |
Оглавление
|