3.5. Алгоритм оптимального поэлементного приема при неселективных общих гауссовских замираниях лучей (учет внутрнсимвольной интерференции)
Ограничимся анализом двухлучевого канала при использовании сигналов, удовлетворяющих условию
. В этом случае, введя в рассмотрение квадратурные компоненты
запишем (3.49) в виде
Если сигналы лучей и их квадратурные компоненты независимы, то их совместная плотность
После усреднения (3.55) с учетом (3.56) для усредненной нормированной функции правдоподобия получаем выражение
(см. скан)
в котором обозначено:
Алгоритм оптимального приема в двухлучевом канале можно записать в виде
(см. скан)
Для систем с активной паузой при использовании алгоритма: максимального правдоподобия пороговый уровень
не зависит от
и в этом случае в алгоритме (3.57) его можно опустить. Отметим, что реализация алгоритма (3.57) в общем случае требует совместной обработки обоих лучей.
При выполнении условия разделения лучей (3.54) сам алгоритм и нахождение его вероятности ошибки существенно упрощаются и не требуют совместной обработки сигналов лучей. При
также исключается совместная обработка сигналов обоих лучей и (3.57) сводится к алгоритму, который будет подробно анализироваться (при произвольном
в гл. 4 в рамках общей теории разнесенного приема временных сигналов.