Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 5. О построении некоторых однородных выражений циркулем и линейкойПользуясь понятием однородной функции, нетрудно выделить некоторые классы алгебраических выражений, которые могут быть построены циркулем и линейкой. Построение этих выражений производится с помощью основных построений, рассмотренных в § 2. 1. С помощью циркуля и линейки можно строить однородные алгебраические выражения 1-го измерения, которые образованы из длин данных отрезков исключительно с помощью действий умножения и деления. Общий вид такого выражения: Задача сводится к последовательному выполнению построений по формулам
т. е. к построениям четвёртых пропорциональных отрезков (§ 2, п. 6).
Рис. 185. Это построение удобно осуществить следующим образом (рис. 185): из произвольной точки О проводим и лучей; на каждом луче строим две точки
На последнем луче откладываем Тогда В частности, всегда можно построить циркулем и линейкой отрезки, заданные формулами вида
2. Пусть
Частный пример построения подобного выражения мы рассмотрели в § 2 (см. прим. 6). Использованный там приём применяется и в общем случае. Многочлен
где Пусть
Каждое такое выражение можно построить (как указано в п. 1), после чего легко строится и сумма таких выражений. Обозначим полученный отрезок через у, так что Таким образом, с помощью циркуля и линейки можно построить отрезок, длина которого задана в виде любой рациональной однородной функции 1-го измерения (с рациональными коэффициентами) от длин данных отрезков. 3. Циркулем и линейкой всегда можно построить выражение вида выражение — однородная рациональная функция 2-го измерения Пусть
Строим последовательно отрезки Пример. Пусть требуется построить выражение Общий приём построения отрезка, заданного однородной функцией 1-го измерения от длин данных отрезков, заключается в том, Что мы выделяем последовательно однородные выражения 1-го измерения, которые можно построить как указано в § 2 пп. 1—10. Именно так мы и поступали при рассмотрении построений, указанных в пп. 1—3 этого параграфа. Пример. Представим заданное выражение в виде 1-го измерения:
|
1 |
Оглавление
|