Главная > Алгебра
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

41. Сумма геометрической прогрессии

Задача 201. Вычислить сумму (каждый член вдвое больше предыдущего).

Первое решение. Добавим 1:

Ответ.

Второе решение. Обозначим сумму через S:

Тогда

В последней сумме (по сравнению с предыдущей) есть лишний член 2048 и недостает 1. Отсюда имеем:

Задача 202. Вычислить суммы

Задача 203. Первый член геометрической прогрессии равен а, а знаменатель равен q. Найти сумму ее первых членов.

Первое решение. Искомая сумма равна Вспомнив разложение на множители

находим, что

Отсюда получаем, что искомая сумма равна

Второе решение. Обозначим искомую сумму через S:

Умножим ее на

Появился член , а член а пропал, так что

Задача 204. В решении и ответе к предыдущей задаче есть неточность. Что это за неточность?

Решение. При ответ не имеет смысла: выражение

не определено. В этом случае все члены прогрессии равны а и сумма равна . Так что можно было бы сказать, что

(Это шутка, но в ней есть и доля правды; вспомните о ней, когда будете изучать дифференцирование функции в курсе математического анализа!)

1
Оглавление
email@scask.ru