Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 5. Определение функции ГринаТеперь нашей основной задачей является определение функции Грина 1). Этот вопрос сам по себе может представить интерес для исследований. Но мы ограничимся двумя специальными случаями: случаем, когда коэффициенты линейного уравнения постоянны, и случаем, когда мы имеем самосопряженное дифференциальное уравнение Штурма — Лиувилля. Постоянные коэффициенты.
Представим
Подставляя эти интегралы в уравнение (1.12), получаем соотношение
которым определяется
Здесь мы не будем останавливаться на том, как выбрать путь интегрирования [4] в комплексной плоскости, чтобы удовлетворить условиям физической осуществимости и устойчивости системы, т. е. граничным условиям, налагаемым на В качестве иллюстрации рассмотрим простой контур
Фиг. 1.3. Функция Грина (импульсная реакция) определяется посредством быстрого размыкания и замыкания выключателя в момент
Выполняя соответствующие подстановки в выражение (1.14), получаем
Здесь достаточно сказать, что мы воспользовались обратным преобразованием Лапласа вместо преобразования Фурье, чтобы обеспечивалось выполнение условия
Фиг. 1.4. Если рассматривать схему фиг. 1.3 как фильтр, то его частотная характеристика может быть получена путем обратного преобразования выражения (1.13), осуществляемого следующим образом:
где (фиг. 1.4)
Дифференциальное уравнение Штурма — Лиувилля (уравнение уравнение
разлагая
(следовательно,
где
что следует из ортогональности функций
Точно так же представим
и, подставив эти выражения в уравнение (1.15), получим
Но поскольку
так что окончательно
В качестве простого примера, показывающего, как изложенные методы можно применять к многомерному случаю, рассмотрим электростатическое уравнение Пуассона. В единицах системы МКС это уравнение имеет вид
где V — электростатический потенциал, обусловленный объемной плотностью заряда
Фиг. 1.5. Функция Грина удовлетворяет уравнению
где функция
символически представляет изолированный точечный заряд в пространстве. Потенциал в точке
где
Таким образом, на основе принципа линейной суперпозиции потенциал
|
1 |
Оглавление
|