Главная > Химия в действии, Ч.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ПЕРИОДИЧНОСТЬ В ХИМИЧЕСКИХ СВОЙСТВАХ ЭЛЕМЕНТОВ И ИХ СОЕДИНЕНИЙ

Расположение элементов в периодической таблице в соответствии с их атомным номером и внешней электронной конфигурацией обусловливает проявление двух важных закономерностей в химических свойствах непереходных элементов и их соединений:

1. Элементы со сходными химическими свойствами подразделяются на группы.

Например, все щелочные металлы находятся в группе I, а все галогены - в группе VII.

2. Наиболее электроположительные элементы, а следовательно наиболее реакционноспособные металлы, располагаются в нижнем левом углу периодической таблицы. Электроположительность элементов постепенно уменьшается при перемещении снизу вверх вдоль каждой группы и при перемещении слева направо вдоль каждого периода.

Наиболее электроотрицательные элементы, а следовательно, наиболее реакционноспособные неметаллы, располагаются в верхнем правом углу периодической таблицы. Электроотрицательность элементов возрастает при перемещении вдоль каждого периода в направлении от I группы к VII группе, но уменьшается при перемещении сверху вниз вдоль каждой группы.

Таблица 11.11. Закономерности в образовании соединений элементами 2-го и 3-го периодов

Таблица 11.12. Примеры лигандов, включающих p-элементы, в комплексных ионах d-элементов

Электроотрицательность или электроположительность элементов непосредственно связана с типами химических реакций, в которые способны вступать элементы, а значит, и с типами соединений, образуемых элементами. s-Металлы характеризуются способностью легко образовывать катионы и, таким образом, ионные соединения (см. табл. 11.11). -Элементы, расположенные ближе к центру периодической таблицы, характеризуются способностью образовывать только ковалентные соединения. Более электроотрицательные p-элементы, расположенные ближе к правому краю периодической

Рис. 11.11. Периодические изменения степеней окисления непереходных элементов

Рис. 11.12. Периодические изменения степеней окисления d-элементов первого, второго и третьего переходных рядов (т. е. 4-го, 5-го и 6-го периодов соответственно).

Таблица 11.13. Характерные валентности элементов 3-го периода

таблицы, способны образовывать как ковалентные, так и ионные соединения. Благородные газы, обладающие устойчивой электронной конфигурацией, образуют сравнительно мало соединений.

Как видно из рис. 11.3, d-элементы располагаются в периодической таблице между группами II и III. Все они - металлы, но менее электроположительные и, следовательно, более электроотрицательные, чем s-металлы (щелочные и щелочноземельные металлы). Вследствие этого их соединения, например оксиды и хлориды, как правило, являются либо ионными с высокой степенью ковалентного характера, либо ковалентными. Совместно с p-элементами, расположенными ближе к центральной части периодической таблицы, они нередко образуют соединения высокомолекулярного типа или соединения со слоистой либо цепочечной структурой.

d-Элементы обладают способностью образовывать как катионные, так и анионные комплексные ионы, что не характерно для s-металлов. р-Элементы часто входят в состав лигандов как в катионных, так и в анионных комплексах (табл. 11.12).

Валентности (см. гл. 4) непереходных элементов тоже обнаруживают периодические изменения. Из табл. 11.13 видно, что все элементы 3-го периода обнаруживают валентности, численно совпадающие с номером группы элемента. Кроме того, все элементы IV-VII групп обнаруживают валентности, равные разности между числом 8 и номером их группы.

Максимальные степени окисления элементов тоже обнаруживают периодические изменения (рис. 11.11 и 11.12). Как правило, они возрастают при перемещении слева направо вдоль периода и достигают максимальных значений в группах V-VII. Обращает на себя внимание и то обстоятельство, что элементы с высшими степенями окисления обнаруживают, кроме них, еще множество других степеней окисления. Например, хлор может существовать в состояниях со всеми степенями окисления от -1 до

Во всех трех рядах переходных металлов (-элементов) максимальная степень окисления достигается в средней части ряда (рис. 11.12). -Элементы с высшими степенями окисления обнаруживают кроме них еще максимальное число других степеней окисления. Например, в первом ряду переходных металлов марганец обнаруживает пять положительных степеней окисления от до

Периодичность окислительно-восстановительных свойств

Окислительно-восстановительные свойства элементов тоже обнаруживают периодические изменения. Закономерность этих изменений такова: элементы, занимающие левую часть периодической таблицы, т. е. щелочные и щелочноземельные металлы (-металлы), являются сильными восстановителями. Затем, при перемещении вправо вдоль каждого периода элементы становятся все более слабыми восстановителями и все более сильными окислителями. Наконец, при переходе к VII группе элементы становятся сильными окислителями. Рассмотрим теперь эту закономерность несколько более подробно.

Восстановительные свойства -металлов характеризуются:

низкой энергией ионизации,

низким сродством к электрону,

низкой электроотрицательностью,

высокой «электроположительностью» (качественный термин - см. предыдущую сноску),

отрицательным стандартным окислительно-восстановительным потенциалом.

Примеры

1. Реакция с воздухом или кислородом

2. Реакция с хлором

Реакция с разбавленными кислотами

Все это примеры восстановительной способности s-металлов, так как в каждом случае металл легко отдает электроны:

Подробное обсуждение химии щелочных и щелочноземельных металлов проводится в гл. 13.

Окислительные свойства элементов VII группы характеризуются: высокой энергией ионизации, высоким сродством к электрону, высокой электроотрицательностью, низкой «электроположительностью»,

положительным стандартным окислительно-восстановительным потенциалом.


Пример

Хлор обладает свойствами сильного окислителя. Он бурно реагирует с водородом на солнечном свету, образуя хлороводород. В отличие от этого он не реагирует с другими окислителями, например с кислородом или разбавленными кислотами. Подробное обсуждение химии хлора и других галогенов проводится в гл. 16.


Свойства элементов из средней части периодов. Элементы группы VII относятся к p-элементам, которые расположены в правой части периодической таблицы. р-Элемен-ты, находящиеся ближе к средней части периодов, обнаруживают слабые восстановительные и (или) слабые окислительные свойства. Например, принадлежащий к группе IV кремний медленно реагирует с кислородом, образуя оксид

Принадлежащий к группе V азот может выступать как в роли слабого восстановителя, так и в роли слабого окислителя. Например, он ведет себя как слабый восстановитель в реакции с кислородом:

В отличие от этого в реакции с водородом азот ведет себя как слабый окислитель:

Переходные -элементы обладают свойствами слабых восстановителей. Например, раскаленное докрасна железо реагирует с водяным паром, образуя водород:

Периодичность свойств соединений

В образовании, структуре, а также физических и химических свойствах соединений тоже обнаруживаются периодические закономерности изменения. Эти закономерности мы проследим на примере оксидов, гидридов, гидроксидов и галогенидов.

Оксиды. Реакционная способность элементов во взаимодействии с кислородом, вообще говоря, уменьшается при перемещении вправо вдоль каждого периода. Например, в 3-м периоде два s-металла, натрий и магний, и два p-элемента, алюминий и фосфор, бурно реагируют с кислородом, образуя оксиды. В том же периоде элементы кремний и сера способны только медленно реагировать с кислородом. Хлор и аргон, расположенные в правом конце периода, вообще не реагируют с кислородом.

Электроположительные s-металлы образуют ионные оксиды, как, например, оксид натрия и оксид магния Оксиды элементов, расположенных в средней и правой частях периода, являются преимущественно ковалентными соединениями, как, например, оксиды азота и серы.

Кислотно-основный характер оксидов тоже изменяется от основного у оксидов элементов левой части периода к амфотерному у оксидов элементов средней части периода и далее к кислотному у оксидов элементов правой части периода. Например, s-металлы обычно образуют оксиды, которые растворяются в воде с образованием щелочных растворов:

Молекулярные оксиды p-элементов, например диоксид углерода и триоксид серы, обычно обладают кислотными свойствами. Закономерное изменение основных свойств с переходом к кислотным свойствам наглядно проявляется у оксидов элементов 3-го периода.

Оксиды d-элементов обычно нерастворимы в воде и обладают основными свойствами, хотя один или два из них. например оксид цинка, обнаруживают амфотерные свойства (см. гл. 14).

Подробное рассмотрение химии оксидов проводится в разд. 15.4.

Гидриды. В образовании, структуре и свойствах гидридов прослеживаются закономерности, сходные с описанными выше для оксидов, хотя и не полностью одинаковые с ними.

s-Металлы, например натрий и магний, как правило, бурно реагируют в нагретом состоянии с сухим водородом, образуя ионные гидриды. Эти ионные гидриды обладают основными свойствами. Наиболее электроотрицательные -элементы в правой части периодов, например сера и хлор, реагируют с водородом, образуя ковалентные гидриды, которые обладают кислотными свойствами. Исключениями являются метан представляющий собой нейтральное соединение, а также аммиак обладающий основными свойствами.

Более электроотрицательные -элементы, например алюминий, кремний и фосфор, в нагретом состоянии не реагируют с водородом.

Переходные d-металлы в нагретом состоянии реагируют с водородом, образуя нестехиометрические гидриды.

Получение, структура и свойства гидридов подробно описаны в гл. 12.

Гидроксиды. Гидроксиды наиболее электроположительных элементов, например натрия и кальция, являются ионными соединениями с сильно основными свойствами. В отличие от этого сильно электроотрицательный элемент хлор образует кислотный гидроксид, хлорноватистую кислоту . В этом соединении связь между атомами хлора и кислорода ковалентная. Гидроксиды некоторых менее электроотрицательных элементов обладают амфотерными свойствами. Нередко они неустойчивы и образуют оксиды.

Таблица 11.14. Свойства хлоридов элементов 3-го периода

Галогениды. Галогениды обнаруживают периодические изменения свойств, сходные с описанными выше для оксидов, гидридов и гидроксидов. При перемещении вправо вдоль периода от наиболее электроположительных к наиболее электроотрицательным элементам наблюдается понижение температуры кипения и температуры плавления (табл. 11.14). Так, хлориды трех первых элементов в 3-м периоде при нормальных условиях представляют собой твердые вещества, хлориды трех следующих элементов - жидкости, а хлор - газообразное вещество.

Ионный характер хлоридов уменьшается при перемещении вправо вдоль периода, а ковалентный характер, наоборот, возрастает.

Галогениды s-элементов, как правило, представляют собой соли сильных кислот и сильных оснований. Они растворяются в воде с образованием нейтральных растворов. Для хлоридов p- и d-элементов характерна способность вступать в реакцию с водой, образуя кислые растворы. Например,

Реакции хлоридов d-элементов в воде описаны в гл. 14, а химия галогенидов более подробно обсуждается в гл. 16.

Диагональные соотношения между элементами

Ранее уже отмечалось, что электроположительность элементов обычно уменьшается при перемещении вправо вдоль периода, но увеличивается при перемещении вниз по группе. Это приводит к возникновению так называемых диагональных соотношений в периодической таблице. Каждое диагональное соотношение связывает между собой пару элементов со сходными химическими свойствами. Важнейшими парами элементов, связанных между собой диагональными соотношениями, являются литий и магний, бериллий и алюминий, бор и кремний.

Наличие диагональных соотношений объясняется тем, что уменьшение электроположительности при перемещении к каждому следующему элементу вправо вдоль периода компенсируется возрастанием электроположительности при перемещении к следующему элементу вниз по группе. Более подробное рассмотрение диагональных соотношений проводится в гл. 13.

Аномалии

Головные элементы в главных подгруппах. Элементы 2-го периода, «возглавляющие» группы I—VII (главные подгруппы в короткопериодной форме периодической таблицы. - Перев.), иногда называют головными элементами. Они представляют интерес в связи с тем, что некоторые свойства этих элементов и их соединений значительно отличаются от аналогичных свойств, характерных для других элементов соответствующих групп. Эти аномальные свойства могут быть приписаны меньшему размеру атомов головных элементов и их более высоким электроотрицательности и энергии ионизации. Например, галогениды лития и бериллия обнаруживают более ковалентный характер, чем галогениды других металлов из соответствующих групп. Литий, в отличие от остальных щелочных металлов, не образует твердого гидрокарбоната. В то время, как нитраты других щелочных металлов разлагаются при нагревании с образованием соответствующих нитритов и кислорода, нитрат лития разлагается с образованием оксида лития, кислорода и диоксида азота. Наконец, в отличие от гидроксидов других щелочных металлов гидроксид лития термически неустойчив. Аномальные свойства лития и других головных элементов подробно обсуждаются в гл. 13, 14 и 16.

Итак, повторим еще раз!

1. Элементы в современной периодической таблице располагаются в порядке возрастания их атомного номера.

2. Элементы одного периода имеют одинаковый электронный остов, с такой же конфигурацией, как у благородного газа, завершающего предыдущий период.

3. Элементы одной и той же группы имеют одинаковую внешнюю электронную конфигурацию.

4. Все -элементы (за исключением водорода и гелия), а также d- и -элементы принадлежат к металлам.

5. Водород и гелий относятся к неметаллам. Все остальные неметаллы принадлежат к р-элементам.

6. При перемещении слева направо вдоль периода металлические свойства элементов ослабевают, а при перемещении сверху вниз вдоль группы металлические свойства элементов усиливаются.

7. Физические свойства элементов (температуры плавления и кипения, энтальпии плавления и испарения, плотность) при перемещении слева направо вдоль периода сначала возрастают, а затем, после достижения максимума в средней части периода, уменьшаются.

8. Атомные и ионные радиусы элементов при перемещении слева направо вдоль периода уменьшаются, а при перемещении сверху вниз вдоль группы возрастают.

9. Первая энергия ионизации элементов при перемещении слева направо вдоль периода увеличивается, а при перемещении сверху вниз вдоль группы уменьшается.

10. Электроотрицательность элементов в пределах каждого периода возрастает, достигая максимума у галогенов, а при перемещении сверху вниз по группе уменьшается.

11. Наиболее электроположительные, а следовательно, наиболее реакционноспособные

способные (активные) металлы располагаются в левом нижнем углу периодической таблицы.

12. Наиболее электроотрицательные элементы располагаются в правом верхнем углу периодической таблицы.

13. s-Элементы, как правило, обнаруживают валентности, совпадающие с номером их группы.

14. р-Элементы имеют главные валентности, равные номеру их группы, а также равные разности между числом 8 и номером их группы.

15. d-Элементы обнаруживают много разных валентностей и степеней окисления.

16. Восстановительные свойства элементов при перемещении сверху вниз вдоль группы ослабевают.

17. Реакционная способность элементов по отношению к кислороду уменьшается при перемещении сверху вниз вдоль группы.

18. Ионный характер оксидов при перемещении слева направо вдоль периода уменьшается, а ковалентный характер увеличивается.

19. Оксиды, гидриды, гидроксиды и галогениды элементов обнаруживают одинаковую периодичность в изменении свойств.

20. Литий и магний обладают сходными химическими свойствами и тем самым демонстрируют наличие между ними диагонального соотношения.

21. Головные элементы, возглавляющие главные группы, обладают аномальными свойствами по отношению к остальным элементам своих групп.

1
Оглавление
email@scask.ru