Главная > Алгоритмы машинной графики и обработки изображений
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3.4. ЛИНЕЙНАЯ ФИЛЬТРАЦИЯ ИЗОБРАЖЕНИЙ

Значительную часть обработки изображений можно выполнить, не повторяя для каждого нового изображения статистический анализ, описанный в предыдущем разделе. Вполне достаточным оказывается ограниченный объем априорных сведений. Допустим, нам известна матрица совместной встречаемости для «идеального» изображения и требуется улучшить качество зашумленного варианта этого изображения. Если наибольшие элементы матрицы расположены на главной диагонали или вблизи нее, то это означает, что большая часть пикселов имеет тот же цвет, что и соседние пикселы. Если мы хотим выровнять гистограмму такого изображения, то, как показано в разд. 3.2, целесообразно воспользоваться правилом 3. Если требуется устранить шум, то замена значения каждого пиксела зашумленного изображения некоторой взвешенной суммой значений соседних пикселов приведет к уменьшению изменчивости значений смежных пикселов, и мы получим изображение, более близкое к оригиналу (см. пример 3.5). Таким образом мы приходим к соотношению, характеризующему связь исходного изображения и изображения подвергнутого фильтрации:

Процесс, реализующий эту операцию, называют линейным фильтром, в частности фильтром скользящего среднего, поскольку при его использовании значение каждого пиксела заменяется разновидностью среднего от значений соседних с ним элементов. Если весовая функция в пределах изображения не изменяется и не зависит от координат х, у, то уравнение (3.2) можно переписать в следующем виде:

Этот процесс называют пространственно-инвариантным фильтром. Эти фильтры широко применяются при обработке временных сигналов, однако целесообразность их использования в обработке изображений не очевидна. Уравнение (3.3) упрощается при записи его через фурье-преобразование. Можно показать (см. разд.

Результат применения такого фильтра состоит в подавлении одних частот и усилении других в зависимости от Н(и,

Пример 3.5. Если требуется очистить изображение от высокочастотного шума, то для осуществления такого сглаживания можно воспользоваться следующей разновидностью функции

Резучьтат применения фильтра можно оценить сравнив разности значении соседних пикселов до и после фильтрации В частности простейшие выкладки показывают что

Если обозначить через максимум абсолютной разности значений смежных пикселов исходного изображения и через соответствующую разность для пикселов изображения, прошедшего фильтрацию, то из уравнения (36) следует

т.е. очевидно, что эта разность расти не может Равенство имеет место только в случаях, когда максимальная разность значений пикселов в раз больше максимальной разности значений для пары пиксетов т.е. когда есть некоторая линейная функция от своих аргументов В противном случае указанная разность будет уменьшаться и области изображения будут принимать более однородный характер Поскольку обычно применение такого простейшего фильтра оказывается недостаточным для устранения шума приходится прибегать к использованию фильтра высшего порядка Одна из возможных реализаций такого фильтра заключается в вы боре простого фильтра и многократном применении его к изображению На рис 39 и 310 приведены результаты фильтрации на рис. 3.10 а представлено исходное изображение полученное из изображения, приведенного на рис 3 9, при помощи наложения на последнее гауссовского белого шума, на рис. 3.10 б представлены результаты восьмикратного применения фильтра заданного уравнением (3 5) Не трудно видеть что этот процесс приводит не только к удалению высокочастотного шума, но вызывает и размывание краев изображения

Рис. 3.9 (см. скан) Исходное изображение использованное для ...

Действительно, если применить уравнение (3.6) к четко очерченному краю изображения

то оказывается, что

Другими словами, разность значений смежных пикселов уменьшилась вдвое и это, естественно привело к понижению контрастности изображения

Результаты применения данного фильтра можно также оценивать, рассматривая фурье-преобразование функции Введем обозначение

Воспользуемся уравнением (34)

Это выражение можно упростить, воспользовавшись тождеством

и выполнив затем простейшие тригонометрические преобразования, в результате выражение (3 8) принимает следующий вид

Отметим, что , если и или равны и что, кроме того,

Таким образом, высокие частоты подавляются.

Рис. 3.10. (см. скан) Изображение с высоким уровнем шумов, полученное путем наложения шума на изображение рис 3.9 (а), изображение, полученное в результате применения процедуры линейной фильтрации к изображению, приведенному на рис 3.10,а

Наличие отмеченной связи между удалением шума и размыванием краев изображения означает, что при обработке изображений линейными пространственно инвариантными фильтрами следует пользоваться осмотрительно К сожалению, обширное и успешное применение подобных фильтров при работе с временными функциями стимулировало их использование в обработке изображений без учета присущих им ограничений

Аналогичная проблема возникает в связи с фильтрами верхних частот Их использование позволяет получать изображения с более резкими краями однако одновременно приводит к усилению высокочастотного шума

Пример 3.6. Простейший фильтр верхних частот определяется следующим образом:

Его фурье-образ имеет вид

Для Н максимум составляет и достигается при а минимум

1
Оглавление
email@scask.ru