Главная > Курс статистической физики (Ноздрев В.Ф.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 2. Понятие вероятности

Вероятность события. В жизненной практике к случайным- событиям или явлениям применяют термины: невозможно, маловероятно, равновероятно, достоверно и другие, которые показывают, насколько мы уверены в появлении дащюго события. Когда мы говорим, что случайное событие маловероятно, то под этим подразумеваем, что при многократном повторении одних и тех же условий это событие происходит гораздо реже, чем не происходит. Наоборот, весьма вероятное событие происходит чаще, чем не происходит. Если при определенных условиях два разных случайных события происходят одинаково часто, то их считают равновероятными. Если мы уверены в том, что при каких-либо условиях данное событие обязательно произойдет, то мы говорим, что оно достоверно. Если, наоборот, уверены что событие не произойдет при определенных условиях, то мы говорим, что это событие невозможно.

Однако, определяя таким образом возможность появления случайного события, мы не можем ввести строгие статистические закономерности, так как это часто связано с нашей субъективной оценкой данного события, ограниченной недостаточностью наших знаний.

Для введения строгих статистических закономерностей требуется и строгое математическое определение вероятности как степени объективной возможности случайного события.

Для того чтобы дать математическое определение вероятности, необходимо рассмотреть какой-нибудь простой пример появления массовых событий. В качестве простейших примеров таких событий обычно рассматривается выпадение той или другой стороны монеты при бросании ее или какой-нибудь цифры при бросании игральной кости. Под отдельным событием здесь рассматривается выпадение той или иной грани (цифры).

Из практики известно, что нельзя заранее точно указать, какая цифра (сколько очков) выпадет при одном бросании игральной кости (единичное событие). Поэтому выпадение определенного числа очков будет событием случайным.

Однако, если рассмотреть целую серию подобных событий — многократное бросание игральной кости, то каждая грань будет выпадать большое число раз и случайные события уже будут массовыми. К ним применимы определенные закономерности.

Из практики известно, что при бросании игральной кости выпадение одной и той же цифры, например, два раза подряд будет возможным, три раза подряд — уже маловероятным, четыре раза подряд — еще менее вероятным, а например, десять раз подряд — практически невозможным.

Далее, если произвести всего шесть бросаний игральной кости, то некоторые цифры могут выпасть по два раза, а некоторые — ни одного. Здесь трудно подметить какую-нибудь закономерность в выпадении определенной цифры. Однако, если число бросаний увеличить до 60, то окажется, что каждая цифра выпадет примерно около десяти раз. В этом и проявляется некоторая закономерность. Однако из-за случайностей при бросании кости (ее начальное положение, скорость, траектория полета) число выпадения различных цифр в разных сериях опытов будет различным. Это связано с недостаточным числом самих опытов.

Если увеличить число бросаний до шести тысяч, то окажется, что примерно одна шестая всех бросаний будет приводить к появлению каждой цифры. И чем больше будет число бросаний тем число выпадений данной цифры будет ближе к

Отношение числа выпадений той или иной цифры при многократном бросании игральной кости к полному числу бросаний называется частотой повторения данного события в серии однородных испытаний. С увеличением полного числа испытаний частота повторения будет стремиться к некоторому постоянному пределу, определяемому данной серией опытов.

Этот предел и называется вероятностью данного события. Однако стремление к пределу частоты повторения будет наблюдаться только при неограниченном увеличении числа испытаний.

В общем случае, если какое-то событие происходит гц раз из полного числа испытаний то математически вероятность определяется как предел отношения числа благоприятных событий к полному числу событий (некоторой однородной группы испытаний) при условии, что число испытаний в этой группе стремится к бесконечности. Другими словами, вероятность события в нашем случае запишется так:

В физике случайная величина часто изменяется с течением времени. Тогда, например, вероятность некоторого состояния системы можно определить по формуле

где — время пребывания системы в данном состоянии, полное время наблюдения.

Отсюда следует, что для опытного определения вероятности какого-то события необходимо произвести если не бесконечное, то очень большое число испытаний найти число благоприятных событий и по их отношению уже найти вероятность данного события.

Во многих практических случаях именно так и поступают для определения вероятности. При этом вероятность

будет определена тем точнее, чем большее число испытаний будет произведено, или чем больше будет промежуток времени, в течение которого рассматриваются события.

Однако во многих случаях о вероятности того или иного события (особенно физического) можно узнать и не производя испытаний вообще. Это так называемая априорная вероятность. Она может быть проверена, конечно, экспериментально.

Для ее нахождения в случае бросания игральной кости будем рассуждать следующим образом. Поскольку игральная кость однородная и бросается различным образом, то выпадение каждой из шести граней будет равновероятным (никакая грань не будет иметь преимущества перед другими). Следовательно, поскольку граней всего шесть, можно сказать, что вероятность выпадения одной из них равна . В этом случае для определения вероятности можно совсем не производить испытаний, а найти вероятность на основании общих соображений.

Функция распределения. В приведенных примерах случайная величина могла принимать только несколько (вполне определенное число) различных значений. Мы называли событиями случаи, когда случайная величина принимала одно из таких значений, и приписывали этим событиям определенную вероятность.

Но наряду с такими величинами (бросание кости, монеты и др.) существуют случайные величины, которые могут принимать бесчисленное множество различных бесконечно близких значений (непрерывный спектр). При этом характерна следующая особенность: вероятность отдельного события, заключающегося в том, что случайная величина принимает какое-то стрлго определенное значение, равна нулю. Поэтому имеет смысл говорить только о вероятности того, что случайная величина принимает значения, расположенные в некотором интервале значений от до

Вероятность нахождения величины в интервале обозначается как При переходе к бесконечно малому интервалу значений вероятность уже будет причем значки указывают на то, то случайная величина может принимать значения в интервалах или т. е. от до или

Вероятность того, что случайная величина может принимать значения от до зависит, во-первых, от

самого значения является некоторой функцией а во-вторых, пропорциональна ширине интервала значений Поэтому вероятность можно записать так:

Совокупность всех значений вероятностей данной случайной величины образует распределение данной случайной величины, которое определяется функцией

Рис. 1. График непрерывной функции распределения

Эта функция называется функцией распределения вероятности. Она показывает, как распределяется вероятность на один и тот же интервал в зависимости от значения самой величины Эта же функция часто называется плотностью вероятности, так как имеет смысл вероятности, отнесенной к единице ширины интервала:

Функция распределения обычно изображается на графике или выражается определенной формулой. На рис. 1 приведена произвольная функция распределения. Согласно (2.3) вероятность определяется площадью заштрихованного участка с основанием Значение случайной величины соответствующее максимуму функции называется наивероятнейшим.

1
Оглавление
email@scask.ru