Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА 3. НЕСЖИМАЕМЫЕ И БАРОТРОПНЫЕ ИДЕАЛЬНЫЕ ЖИДКОСТИ§ 1. Общие принципы16. Введение.Мы начинаем детальное изучение свойств движущейся жидкости с частного, но весьма важного случая идеальной жидкости. В этом случае вектор напряжений выражается простой формулой
В общем случае к этим четырем уравнениям следует добавить термодинамическое соотношение
где через
Течение, в котором плотность и давление связаны таким образом, называется баротропным. Заметим, что соотношение (16.4) может выполняться либо в силу особых условий, при которых происходит движение, либо в силу присущих самой жидкости свойств. В последнем случае жидкость называется пьезотропной (различие между баротропным движением и движением пьезотропной жидкости станет ясным, если заметить, что любое течение пьезотропной жидкости баротропно, но не наоборот; см., например, приведенные ниже примеры). Пьезотропная жидкость, для которой Укажем следующие примеры баротропного течения. 1. Установившееся движение воздуха при числах Маха от 2. Изэнтропическое движение газа. В случае, например, совершен! о о газа с постоянными удельными теплоемкостями,
Все результаты, полученные в этой главе, основаны на предположении консервативности поля внешних сил, Характерным свойством баротропного движения является потенциальность поля ускорений
Эта простая формула Эйлера является основой дальнейшего исследования и приводит к значительному упрощению вопроса о свойствах движения жидкости. Плоское движение. Осесимметричное движение. Векторные линии. Краткий обзор этих понятий, которым мы заканчиваем вводный пункт данного раздела, имеет своей главной целью установить терминологию. Движение жидкости называется плоским течением, если в некоторой прямоугольной системе координат
Кривая, касательная к которой совпадает в каждой точке с данным непрерывным векторным полем, называется векторной линией. В частности, векторные линии поля скоростей называются линиями тока, а векторные линии поля вектора завихренности — вихревыми линиями. (Заметим, что линии тока и траектории частиц совпадают, вообще говоря, только в случае установившегося движения.) Наконец, говорят, что движение безвихревое, если поле вектора завихренности равно нулю.
Рис. 2. Система координат для осесимметричного движения.
|
1 |
Оглавление
|