Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
7. Закон сохранения момента количества движения.В классической динамике материальных точек или твердых тел принцип сохранения момента количества движения обычно формулируется в виде теоремы. Ее доказательство основано, однако, на определенных предположениях относительно "внутренних" сил взаимодействия частиц или тел, образующих материальную систему. Аналогичный метод применим и в механике сплошных сред. Здесь для того, чтобы обеспечить сохранение момента количества движения, нужно сделать определенные предположения относительно напряжений на поверхностных элементах или, другими словами, относительно тензора напряжений. Точнее: мы постулируем симметричность тензора напряжений, т. е. равенство
(При наличии внешних моментов сил введенное предположение нуждается в модификации. Однако при изучении механики жидкости можно, что мы и делаем в дальнейшем, пренебрегать воздействием этих закручивающих моментов, так как они, вообще говоря, возникают только в поляризованном веществе.) Соотношения (7.1) были получены впервые Кошикак следствие принципа сохранения момента количества движения. Тот факт, что эти условия являются и достаточными для справедливости указанного принципа, был обнаружен Больцманом (см. [42], стр. 9). Теорема (закон сохранения момента количества движения). Для любой сплошной среды, удовлетворяющей уравнению неразрывности (5.3), уравнениям движения (6.7) и постулату Больцмана (7.1), мы имеем
для произвольного объема Доказательство. Исходя из уравнений (5.7) и (6.7), нетрудно показать, что
Через Для некоторых жидкостей тензор напряжений оказывается симметричным в силу чисто механических причин, независимо от каких-либо других предположений. Мы отметим, в частности, невязкие жидкости, для которых Можно формально построить механическую систему, для которой тензор
|
1 |
Оглавление
|