Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 29. РАСПРЕДЕЛЕНИЕ ЧАСТИЦ ПО ЭНЕРГИЯМ (РАСПРЕДЕЛЕНИЕ БОЛЬЦМАНА)Рассмотрим систему, состоящую из Для описания распределения частиц по энергиям рассмотрим ось координат, на которой будем откладывать значения энергии частиц, и разобьем ее на интервалы
Рис. 1.20. место на оси энергии. Фиксируя их через определенные промежутки времени, наблюдатель пришел бы к следующему заключению: при термодинамическом равновесии число изображающих точек на каждом из выделенных участков энергии остается с достаточной точностью одинаковым. Числа же заполнений энергетических интервалов зависят от их положения на выбранной оси. Пусть все выделенные энергетические интервалы пронумерованы. Тогда на
Отношение Функция
где А — постоянная величина, Согласно (29.2) для любой системы, находящейся в равновесии и подчиняющейся законам классической статистики, число молекул, обладающих энергией Просуммировав правую и левую части равенства (29.2) по всем энергетическим интервалам, найдем:
Величина Разделим (29.3) на
Если
Интеграл, входящий в последнее выражение, равен единице, поэтому
где В общем случае энергия частицы
или
Таким образом, вероятность распределения частиц по их полной энергии определяется произведением величин На основе сделанного вывода можно расчленить сложную картину движения и взаимодействия молекул и рассматривать ее по частям, выделяя отдельные составляющие энергии. Так, при наличии гравитационного поля можно рассматривать распределение частиц в этом поле независимо от их распределения по кинетической энергии. Точно так же можно независимо исследовать вращательное движение сложных молекул и колебательное движение их атомов. Формула Больцмана (29.2) является основой так называемой классической статистической физики, в которой считается, что энергия частиц может принимать непрерывный ряд значений. Оказывается, что поступательное движение молекул газов и жидкостей, за исключением молекул жидкого гелия, достаточно точно описывается классической статистикой вплоть до температур, близких к 1 К. Некоторые свойства твердых тел при достаточно высоких температурах также поддаются анализу с помощью формул Больцмана. Классические распределения являются частными случаями более общих квантовых статистических закономерностей. Применимость формул Больцмана в такой же мере ограничена квантовыми явлениями, как и применимость классической механики к явлениям микромира. В основе больцмановской статистики лежит предположение о том, что изменение энергии молекулы является случайным событием и что попадание молекулы в тот или иной энергетический интервал не зависит от заполнения интервала другими частицами. Соответственно формулы Больцмана можно применять только к решению таких задач, для которых выполняется указанное условие. В заключение используем выражение (29.5) для определения числа молекул, которые могут обладать энергией, равной или большей
Интегрирование приводит к соотношению
Таким образом, по плотности вероятности можно определить число молекул с энергиями
|
1 |
Оглавление
|