Главная > Курс общей химии
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ V.7. АДСОРБЦИОННОЕ РАВНОВЕСИЕ

Сорбционные процессы.

Процесс поглощения одного вещества поверхностью или объемом другого называется сорбцией (от лат. — поглощаю). Вещество, частицы которого поглощаются (газ, жидкость или растворенный компонент), называют сорбатом, а поглотитель (чаще всего твердое тело) — сорбентом. Так, при 288 К и нормальном давлении 1 кг древесного угля сорбирует диоксида серы аммиака

Сорбционные процессы играют большую роль в технике. Например, для поддержания высокого вакуума в действующем электронно-вакуумном приборе применяют геттеры — специально изготовленные материалы, которые активно поглощают (сорбируют) остаточные газы. В качестве геттеров используют чаще всего компактные (Zr, Та, Nb и др.) или распыленные (Ва, Са, Sr) металлы. Сорбционные процессы широко используют в металлургии при обогащении руд (флотация), в энергетике при водоподготовке (ионный обмен) и во многих других отраслях промышленности.

При контакте сорбент поглощает сорбат или поверхностью, или всем объемом. Сорбция только поверхностью называется адсорбцией, а только объемом — абсорбцией. Часто адсорбция и

Рис. V.11. Поверхностный слой адсорбента

абсорбция протекают совместно. Как правило, адсорбция предшествует абсорбции.

Адсорбция на поверхности твердых тел.

Явление адсорбции было открыто во второй половине XVIII в. Шееле в 1773 г. (Швеция) и Фонтана в 1777 г.

(Франция) наблюдали поглощение газов углем, а Т. Е. Ловитц в 1785 г.

(Россия) — поглощение углем органических веществ из водных растворов.

В 1915 г. Н. Д. Зелинский на основе адсорбции газов активированным углем создал противогаз, который применялся во время первой мировой войны для защиты от отравляющих веществ. Активированный уголь и в настоящее время используют как адсорбент в различных технологических процессах.

Адсорбция играет важную роль во многих физико-химических и физических процессах. Советскими учеными П. А. Ребиндером, Ю. В. Горюновым и Е. Д. Щукиным было, например, установлено, что адсорбция поверхностно-активных веществ уменьшает энергию химических связей в поверхностном слое твердого тела и соответственно уменьшает прочность последнего (эффект Ребиндера). Исследование этого явления лежит в основе нового направления науки — физико-химической механики. Использование эффекта Ребиндера дает огромный экономический эффект. Благодаря ему ускоряют процессы механической обработки металлов, бурения горных пород и др.

Адсорбция связана с особым энергетическим состоянием частиц на поверхности адсорбента в отличие от энергетического состояния частиц, находящихся в его объеме (рис. V.11). Частицы (молекулы, атомы или ионы) во внутренних слоях вещества испытывают в среднем одинаковое по всем направлениям притяжение со стороны окружающих частиц. Частицы же поверхностного слоя подвергаются неодинаковому притяжению со стороны частиц внутренних слоев вещества и со стороны частиц граничащей с веществом посторонней фазы. Поэтому частицы поверхностного слоя адсорбента обладают свободной поверхностной энергией, которая может быть снижена за счет возникновения адсорбционных взаимодействий с молекулами, атомами и ионами адсорбата.

Адсорбционная способность любого адсорбента определяется в первую очередь его удельной площадью поверхности

где площадь поверхности адсорбента; — масса адсорбента. Поскольку где — плотность; V — объем, уравнение (V.37) можно записать и так:

где степень дисперсности (раздробленности) адсорбента.

Таким образом, удельная площадь поверхности адсорбента, а следовательно, и адсорбционная способность будут тем больше, чем больше его степень дисперсности или чем меньше линейные размеры частиц, на которые раздроблен адсорбент. Активные, т. е. хорошо поглощающие, адсорбенты обладают весьма большой удельной площадью поверхности. Примерами таких высокодисперсных адсорбентов с удельной площадью поверхности до нескольких сотен и даже тысяч квадратных метров на являются активированный уголь, силикагель, пористые кристаллы цеолитов.

Взаимодействия между частицами адсорбата и адсорбента могут иметь различный характер. В зависимости от природы возникающих взаимодействий различают физическую адсорбцию и химическую (хемосорбцию).

При физической адсорбции частицы адсорбата и адсорбента связываются относительно непрочными межмолекулярными силами сцепления (силами Ван-дер-Ваальса). В связи с этим физическая адсорбция сопровождается небольшим отрицательным тепловым эффектом и протекает обратимо.

При хемосорбции частицы адсорбата и адсорбента связываются более прочными силами сцепления за счет возникающего химического взаимодействия, которое приводит к образованию нового химического соединения на поверхности адсорбента. Хемосорбция, как правило, сопровождается отрицательным тепловым эффектом, величина которого имеет порядок теплового эффекта экзотермической химической реакции. Примером хемосорбции может служить адсорбция кислорода металлами. Хемосорбция может распространяться с поверхности адсорбента на его объем, переходя в обычную гетерогенную реакцию.

Изотерма адсорбции.

Процесс отрыва частиц адсорбата от поверхности адсорбента, т. е. явление, обратное адсорбции, называют десорбцией. Если в системе адсорбат — адсорбент при заданных условиях скорость адсорбции равна скорости десорбции, состояние системы называют адсорбционным равновесием. Адсорбционное равновесие подвижно и может быть смещено в ту или другую сторону в соответствии с принципом Ле Шателье.

Количественно адсорбцию можно выражать в молях адсорбата на единицу площади поверхности адсорбента, Адсорбция зависит от природы адсорбента и адсорбата, температуры и концентрации или давления адсорбата. Кривую зависимости величины адсорбции Г от равновесных концентраций С или давлений адсорбата при постоянной температуре Т называют

изотермой адсорбции: или при

Поверхность адсорбентов обычно неоднородна. Это связано с особенностями их строения и получения. Неоднородность поверхности адсорбента очень усложняет математические зависимости, описывающие адсорбцию. Поэтому для получения простейших закономерностей обращаются к физической адсорбции идеального газа однородной поверхностью адсорбента. К адсорбентам с практически однородной поверхностью относится сажа, прокаленная при 3000 °С. При адсорбции газа на саже образуется мономолекулярный адсорбционный слой, толщина которого определяется размерами молекул адсорбата и их ориентацией на поверхности адсорбента.

Поверхность адсорбента, на которой могут размещаться молекулы адсорбата, ограничена. При условии мономолекулярности адсорбционного слоя ограничена и его толщина Поэтому адсорбция не может превышать предельного значения Изотерма адсорбции на однородной поверхности адсорбента была выведена американским ученым Дж. Лэнгмюром. Он предполагал, что адсорбция локализована и идеально обратима. Согласно этому предположению, молекулы газа адсорбируются только на свободных от адсорбата местах поверхности адсорбента, в то время как десорбция молекул осуществляется только с занятых мест. Связь адсорбата с адсорбентом должна быть достаточно прочной для того, чтобы адсорбционный комплекс не перемещался вдоль поверхности адсорбента (локализованная адсорбция).

Для вывода уравнения изотермы монослойной локализованной адсорбции рассмотрим обратимый процесс: молекула газа свободное место на поверхности адсорбента локализованный адсорбционный комплекс

Назовем соотношение степенью заполнения поверхности адсорбента данным адсорбатом 0:

Соответственно будет обозначением доли свободной от адсорбата площади поверхности.

Чтобы произошла адсорбция молекулы газа поверхностью адсорбента, молекула должна удариться о поверхность и попасть при этом на свободное место. Число ударов пропорционально концентрации молекул газа С в объемной фазе, а вероятность попасть на свободное место — доле свободных мест . Поэтому скорость процесса адсорбции уадс равна

где — константа скорости адсорбции.

Скорость десорбции удес пропорциональна степени заполнения поверхности адсорбента, так как десорбция идет только с занятых адсорбционным комплексом мест поверхности:

где — константа скорости десорбции.

Адсорбционное равновесие характеризуется равенством На основании уравнений (V.40) и (V.41) при равенстве скоростей рассматриваемых процессов имеем

или

где К — константа адсорбционного равновесия при заданной температуре.

Преобразовав уравнение (V.42), получим уравнение изотермы адсорбции Лэнгмюра:

Учитывая соотношение (V.39), уравнение изотермы адсорбции Лэнгмюра можно записать и в виде

или

где — равновесное парциальное давление адсорбата (газа); — константа адсорбционного равновесия.

Графически изотерма адсорбции Лэнгмюра, построенная координатах или представляет собой гиперболу (рис. V.12). В области малых равновесных концентраций (давлений) газа, когда слагаемым в уравнениях (V.44) и (V.45) можно пренебречь, уравнение Лэнгмюра принимает вид

В области больших концентраций (давлений) газа, когда в уравнениях (V.44) и (V.45) можно пренебречь единицей, так как уравнение Лэнгмюра принимает вид

Изотерму адсорбции на неоднородной поверхности обычно получают эмпирическим путем. Одной из подобных изотерм является изотерма Фрейндлиха

где — постоянные для данной системы величины.

Хроматография.

Если адсорбция вещества слоем сорбента осуществляется из потока жидкости или газа, то такая адсорбция называется динамической. На явлении динамической адсорбции основан метод разделения сложных смесей веществ, открытый в 1903 г. русским ученым М. С. Цветом и названный им хроматографическим.

Рис. V.12. Изотерма адсорбции Лэнгмюра

Хроматографическим методом (хроматографией) называют метод разделения, при котором компоненты смеси распределяются между неподвижным слоем твердого поглотителя и потоком газа или раствора.

В качестве твердых поглотителей применяют силикагель, оксид алюминия, активированные угли, а также иониты, как природные, так и синтетические (ионообменные смолы). В последние годы применяют и жидкие поглотители (на твердом носителе).

В настоящее время предложен целый ряд хроматографических методов, которые можно классифицировать по агрегатным состояниям разделяемой смеси и поглотителя (жидкостно-ад-сорбционная хроматография и др.), по форме осуществления процесса (проявительный, вытеснительный и фронтальный методы), по характеру взаимодействия, лежащего в основе метода (адсорбционный метод, осадочный метод и др.).

Хроматография широко применяется для анализа сложных смесей компонентов, выделения и разделения разнообразных веществ, получения веществ высокой степени чистоты. Например, метод хроматографии используют в производстве трансурановых элементов, в очистке полупроводниковых материалов, для удаления примесей из газов и т. п.

1
Оглавление
email@scask.ru