Главная > Курс общей химии
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава XI. ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

§ XI.1. ОСОБЕННОСТИ. ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ И КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Соединения углерода (кроме наиболее простых) получили название органических. Это либо природные, либо искусственно полученные вещества.

Особенности органических соединений.

Органические соединения очень многочисленны и разнообразны, их число превышает 4 млн. Разнообразие органических соединений в значительной мере обусловлено способностью атомов углерода образовывать ковалентные связи друг с другом. Вследствие высокой прочности связей углерод — углерод образуются цепи, состоящие из большого числа углеродных атомов. Цепи могут быть как открытыми, так и замкнутыми (циклы). Углерод взаимодействует со многими другими атомами. С водородом углерод образует соединения, называемые углеводородами. Разнообразие органических соединений также обусловлено явлением изомерии, которое заключается в существовании веществ одинаковых по составу и

молекулярной массе, но различных по структуре и пространственному расположению атомов.

К особенностям органических соединений можно также отнести существование гомологических рядов, у которых каждый последующий член может быть произведен от предыдущего добавлением одной определенной для данного ряда группы атомов. Например, в гомологическом ряду предельных углеводородов такой группой является Гомологический ряд характеризуется общей формулой, например для предельных углеводородов. Члены гомологического ряда имеют определенную общность в химических свойствах. В то же время происходит закономерное изменение физических свойств элементов по мере увеличения числа групп.

Для большинства органических соединений характерна относительно невысокая скорость химических взаимодействий при обычных условиях. Это обусловлено высокой прочностью ковалентной связи углерод — углерод и углерода с другими атомами и относительно малой разностью энергии связи углерода с различными атомами:

В ряду значений электроотрицательности углерод занимает среднее положение между типичными окислителями и восстановителями, поэтому разность электроотрицательностей углерода с большинством других атомов относительно невелика. В силу этого химические связи в органических соединениях, как правило, малополярны. Большинство органических соединений не способно к электролитической диссоциации.

Температура плавления большинства органических соединений относительно невысокая (до 100-200 °С). При высокой температуре они сгорают на воздухе в основном до диоксида углерода и паров воды.

Теория химического строения органических соединений А. М. Бутлерова.

В 1861 г. А. М. Бутлеров сформулировал основные положения теории химического строения.

1. Атомы в органической молекуле соединяются между собой в определенном порядке в соответствии с их валентностью, что и обусловливает химическое строение молекул.

2. Молекулы с одинаковым составом могут иметь разное химическое строение и соответственно обладать различными свойствами. Такие молекулы называют изомерами. Для данной эмпирической формулы можно вывести определенное число теоретически возможных изомеров.

3. Атомы в молекуле оказывают взаимное влияние

друг на друга, т. е. свойства атома могут изменяться в зависимости от природы других атомов соединения. Следует отметить, что взаимное влияние испытывают не только связанные атомы, но и непосредственно не связанные друг с другом.

4. Каждое органическое соединение имеет лишь одну химическую формулу.

Таким образом, свойства любого вещества могут быть описаны, если известны его химический состав, химическое строение и взаимное влияние атомов. Теория А. М. Бутлерова позволила объяснить особенности свойств органических соединений, в частности явление изомерии.

Изомерия.

Различают структурную и пространственную изомерию. Структурная изомерия обусловлена различным порядком связей углеродных атомов (изомерия скелета) или различным расположением функциональных групп или кратных связей (изомерия положения). Изомерию скелета можно иллюстрировать изомерами пентана

Изомерию положения можно показать на примере пропилового спирта:

Пространственная изомерия обусловлена различным расположением химических связей атомов углерода в пространстве и включает геометрическую, оптическую и другие виды изомерии. Пространственные изомеры называют стереоизомерами. К числу геометрических стереоизомеров относятся цис- и транс-изомеры, например изомеры 1,2-дибромэтена:

Оптические изомеры имеют в своем составе один или несколько атомов углерода, связанных с четырьмя различными атомами

или группами атомов. Такие изомеры отличаются друг от друга, как предмет от своего зеркального изображения. Они обладают способностью вращать плоскость поляризованного луча света вправо или влево.

Классификация органических соединений.

Органические соединения могут иметь открытую и замкнутую цепи и соответственно называются ациклическими (алифатическими) и циклическими соединениями. Ациклические соединения с ординарными (не кратными) связями между атомамй углерода называют предельными, а с двойными или тройными связями между атомами углерода — непредельными соединениями. Циклические соединения подразделяются на карбо- и гетероциклические соединения. Кольца карбоциклических соединений содержат лишь атомы углерода. К карбоциклическим относятся ароматические и алициклические соединения. Кольца гетероциклических соединений наряду с углеродом содержат другие атомы, например азот, кислород, серу, фосфор. В соответствии с международной систематической номенклатурой названия органических соединений слагаются из словесных обозначений частей их структуры и знаков, указывающих способ связей этих частей. Основная часть названия соединения состоит из названия самой длинной неразветвленной цепи атомов углерода. Число углеродных атомов в цепи (кольце) обозначаются греческими числительными (кроме первых четырех, обозначаемых «проп» — атома), например «гекс»

С помощью суффиксов или префиксов обозначают классы соединения. Например, суффикс входит в названия предельных соединений (пропан гептан — соединений с тройной связью в основной цепи (пропин — спиртов, префикс -цикло — циклических соединений

С помощью суффикса -ил обозначают соответствующие радикалы (например, — этил). Функциональным группам, входящим в состав соединений, присвоены соответствующие названия, например: — карбокси, — сульфо, — гидрокси, — амино, — нитрозо. Число одинаковых заменителей обозначают приставками (ди, три, тетра и т. д.), с помощью цифр обозначают порядковые номера углеродных атомов, у которых имеются боковые цепи или функциональные группы. (Для обозначения боковых цепей и функциональных групп используются дефисы, запятые, скобки.) В качестве примера приведем название одного соединения

Наряду с систематической существуют другие виды номенклатур.

До сих пор используют тривиальные названия, которые исторически получили те или иные соединения.

Классификация химических реакций по характеру разрыва химической связи.

При протекании химических реакций ковалентные связи в органических соединениях разрываются либо по гемолитическому, либо гетеролитическому механизму. При гомолитинеском разрыве связи электронная пара распадается на два электрона и соответственно возникают два атома (или две группы атомов) с неспаренными электронами — радикалы. К гемолитическим относятся реакции радикальной полимеризации, горения органических соединений и др.

При гетеролитическом разрыве связи электронная пара переходит к одному из атомов (или к одной из групп атомов), в результате этого возникают катионы и анионы, которые принимают участие в последующих взаимодействиях. Реакции, возникающие при гетеролитическом разрыве связи, называются гетеролити-нескими или ионными.

Положительно заряженные ионы, например карбонил-ион стремятся в ходе реакции получить электроны, поэтому они называются электрофильными или электроноакцепторными реагентами.

Отрицательно заряженные ионы, например стремятся отдать электроны или взаимодействовать с такими частями молекул, которые несут положительный заряд, поэтому они называются электронодонорными или нуклеофильными. Большинство органических реакций протекает по гетеролитическому механизму.

1
Оглавление
email@scask.ru