Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ VI.4. ВОДНЫЕ РАСТВОРЫ ЭЛЕКТРОЛИТОВВода является растворителем для многих веществ. Это обусловлено полярным характером молекул воды и способностью ее молекул образовывать химические связи с другими молекулами. Учитывая широкое распространение водных растворов электролитов и их большую важность для науки и техники, рассмотрим эти растворы более подробно. Слабые электролиты. Константа диссоциации.В растворах слабых электролитов процесс диссоциации протекает обратимо и, следовательно, к нему может быть применен закон действующих масс. Так, для процесса диссоциации уксусной кислоты
константа равновесия
Константу равновесия для процесса диссоциации называют константой диссоциации В соответствии с принципом Ле Шателье подобная температурная зависимость константы диссоциации указывает на то, что процесс диссоциации является экзотермическим, т. е. суммарная теплота гидратации ионов выше энергии внутримолекулярных связей. Константа диссоциации представляет собой важную характеристику слабых электролитов, так как указывает на прочность их молекул в данном растворе. Чем меньше константа диссоциации в данном растворителе, тем слабее диссоциирует электролит и тем, следовательно, устойчивее его молекулы. Учитывая, что степень диссоциации в отличие от константы диссоциации изменяется с концентрацией раствора, необходимо выяснить связь между степенью диссоциации электролита и концентрацией его в растворе. Для этого рассмотрим реакцию диссоциации уксусной кислоты. Если исходную концентрацию раствора принять равной С, а степень диссоциации, соответствующую этой концентрации, а, то число продиссоциированных молекул уксусной кислоты будет равно
где Уравнение (VI.11) известно в теории растворов как закон Оствальда. Для растворов слабых электролитов, у которых степень диссоциации меньше единицы, уравнение (VI. 11) можно упростить, считая, что разность (1—а) примерно равна единице. Тогда
Многоосновные слабые кислоты и основания диссоциируют ступенчато, причем константа диссоциации по каждой последующей ступени всегда на несколько порядков ниже, чем по предыдущей (табл. VI. 1). Сильные электролиты.Многие свойства растворов, такие, как электрическая проводимость, температура кипения и замерзания, давление насыщенного пара, зависят как от концентрации раствора, т. е. от числа растворенных в нем частиц, так и от взаимного влияния этих частиц друг на друга. Степень взаимодействия частиц в растворе тем выше, чем больше плотность их зарядов или полярность и чем меньше среднее расстояние между ними. В растворах слабых электролитов взаимодействие ионов друг с другом относительно невелико вследствие их незначительной концентрации. Поэтому главным фактором, влияющим на перечисленные выше свойства таких растворов, является суммарная концентрация растворенных в них частиц (как ионов, так и молекул), определенная с учетом степени или константы диссоциации. В растворах сильных электролитов вследствие полной их диссоциации концентрация ионов велика. Поэтому свойства таких растворов будут существенно зависеть от степени взаимодействия входящих в их состав ионов как друг с другом, так и с полярными молекулами растворителя. Взаимодействие ионов в растворах сильных электролитов будет приводить к тому, что катионы и анионы будут испытывать взаимное притяжение, а ионы одного знака заряда будут отталкиваться друг от друга. Поэтому в растворе каждый произвольно выбранный ион будет окружен в среднем во времени преимущественно противоположно заряженными ионами, как, например, в ионных кристаллах. Однако энергия теплового движения ионов в жидких растворах значительно выше, чем в кристаллах. Поэтому ионы, взаимодействующие с выбранным центральным ионом, располагаются вокруг него не в виде кристаллической решетки, а в виде сферы, которая называется ионной атмосферой (рис. VI.3). Ионные атмосферы обладают следующими характерными особенностями: в их состав входят катионы и анионы. Однако преобладают Таблица VI.1. Константы диссоциации некоторых электролитов при 298 К
Рис. VI.3. Модель ионной атмосферы ионы, противоположные по знаку заряда центральному иону. Суммарный заряд ионной атмосферы равен по величине заряду центрального иона и противоположен ему по знаку; все ионы в растворе равноправны, поэтому каждый из них является центральным ионом и одновременно входит в состав ионной атмосферы другого иона; за счет теплового движения ионы, входящие в состав ионной атмосферы, постоянно меняются местами с ионами, находящимися за ее пределами, т. е. ионная атмосфера носит статистический характер. Введение понятия «ионная атмосфера», предложенного впервые Дебаем и Хюккелем, позволило значительно упростить все расчеты, связанные с процессами, протекающими в растворах сильных электролитов. Вместо практически недоступного расчета энергии взаимодействия отдельных ионов все основные параметры раствора выражают как функцию суммарного взаимодействия входящих в его состав ионов с их ионными атмосферами. Энергия этого взаимодействия зависит от плотности заряда ионной атмосферы и ее среднего радиуса. С ростом концентрации раствора электролита плотность заряда ионной атмосферы растет, а ее средний радиус уменьшается, что увеличивает энергию взаимодействия центральных ионов с их ионными атмосферами. С ростом концентрации более сильное влияние на свойства раствора начинает оказывать процесс образования сольватов. В результате процесса сольватации изменяются размеры растворенных частиц, плотность их заряда, а также вязкость всего раствора в целом. С увеличением концентрации раствора электролита уменьшается среднее расстояние между противоположно заряженными ионами. При этом растет вероятность образования длительно существующих ионных пар, так называемых ионных двойников и тройников, основное отличие которых от молекул заключается в большей длине связи и наличии взаимодействующих с ионной парой молекул растворителя. Итак, увеличение концентрации раствора электролита приводит к тому, что во взаимодействии между растворенными частицами более важную роль начинают играть близкодействующие силы химической связи. Природа и энергия этих сил зависит от специфических свойств взаимодействующих частиц. Поэтому с ростом концентрации увеличивается различие в свойствах растворов электролитов одинаковой концентрации, но разного химического состава. Активность электролитов в водных растворах.Как указывалось в § VI.2, для применения законов идеальных растворов к реальным системам была введена активность а. Метод вычисления коэффициента активности у по экспериментальным данным [см. уравнение (VI.8)] позволяет определить лишь значения средних коэффициентов активности электролита. В настоящее время не существует методов экспериментального определения коэффициентов активности отдельных ионов. При необходимости расчета этих величин обычно принимают, что средний коэффициент активности электролита представляет собой среднее геометрическое коэффициентов активности образующих его ионов. Так, для электролита
Например, для раствора
для раствора
Коэффициенты активности зависят от природы растворителя и растворенного вещества, от концентрации раствора, а также от температуры (табл. VI.2). Таблица VI.2. Коэффициенты активности некоторых электролитов в растворах при 298 К
Как видно из табл. VI.2, коэффициенты активности меняются в очень широких пределах: в области разбавленных растворов они стремятся к единице, в то время как в области высококонцентрированных растворов они могут достигать единиц, десятков и даже сотен. В области разбавленных растворов (ниже 0,1 моль/л) коэффициенты активности зависят главным образом от концентрации и заряда ионов, присутствующих в растворе, и мало зависят от природы растворенных веществ. Эта закономерность известна в теории растворов под названием «правила ионной силы». Согласно этому правилу, ионы одинаковой зарядности независимо от их природы в разбавленных растворах с одинаковой ионной силой имеют равные коэффициенты активности. Ионной силой раствора называется полусумма произведений концентраций всех ионов, присутствующих в растворе, на квадрат их заряда:
Правило ионной силы позволяет рассчитать коэффициенты активности отдельных ионов в разбавленных растворах. Коэффициенты активности ионов уменьшаются с увеличением ионной силы растворов и заряда ионов (табл. IV.3). Таблица VI.3. Коэффициенты активности ионов в водных растворах при
Коэффициенты активности сами по себе не раскрывают природы процессов, протекающих в реальных системах. Они просто позволяют, используя простейшие соотношения, быстро и легко рассчитать реальные свойства растворов. Исходя из этого, в дальнейшем для расчета константы равновесия любого обратимого процесса, протекающего в растворе, вместо концентраций будут использоваться соответствующие активности. Так, для обратимого процесса
отражающего, например, диссоциацию слабого электролита в растворе, константа равновесия будет равна
|
1 |
Оглавление
|