Главная > Курс общей химии
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ III.5. РЕАЛЬНЫЕ КРИСТАЛЛЫ

Дефекты кристаллов и их возиикиовение.

Ранее были рассмотрены физико-химические характеристики «идеальных» кристаллических структур. Закономерности формирования таких структур позволяют объяснить многие свойства и реальных кристаллов, такие, например, как плотность, диэлектрическая проницаемость, удельная теплоемкость, упругость. В то же время целый ряд очень важных свойств твердых систем (прочность, электрическая проводимость, теплопроводность, оптические и магнитные свойства, каталитическая активность) существенно зависит от того, насколько кристаллические структуры таких веществ отклоняются от идеальных. В реальных кристаллах всегда существуют структурные нарушения, обычно называемые несовершенствами или дефектами. Дефекты кристаллов иногда сообщают твердым телам весьма ценные свойства, в связи с чем их реализуют искусственным путем.

Можно указать две основные причины возникновения дефектов в кристаллах. Первая обусловлена тепловым движением частиц, формирующих кристалл. С повышением температуры твердого тела энергия такого движения растет, поэтому возрастает и вероятность образования подобного рода дефектов, обычно называемых собственными или тепловыми. Другой вид дефектов связан с наличием в структуре вещества тех или иных примесей. Вообще говоря, абсолютно химически чистых веществ не существует. Однако влияние примесей на свойства вещества может быть незначительным, и тогда их присутствием пренебрегают. Когда присутствующие примеси существенно изменяют свойства твердого тела, говорят о дефектах химического состава кристалла или примесных дефектах.

Дефекты в кристаллах могут возникать и как следствие воздействия на них внешних механических нагрузок. Так, при необратимом растяжении кристалла наступает его пластическая деформация, при которой в материале возникают плоскости скольжения с наибольшим сдвигом. За счет механических нагрузок в кристалле могут возникать трещины и другие макродефекты.

Влияние точечных дефектов кристаллов на свойства твердого тела.

Дефекты того или иного типа влияют на свойства твердого тела в зависимости от их положения в кристаллической решетке и числа подобных нарушений в единице объема кристалла. Обычно говорят о концентрации дефектов, относя их число или к единице объема, или к одному молю вещества.

Рассмотрим, какие искажения вносят тепловые и примесные дефекты в структуру кристаллов, а также влияние подобных искажений на свойства твердых тел. Тепловые дефекты возникают как следствие тепловых колебаний частиц в узлах пространственной решетки кристалла. Обычно тепловые колебания частиц не приводят к нарушениям идеальной структуры кристалла. Исключения возникают, если та или иная частица или группа частиц приобретают повышенный запас кинетической энергии и покидают узлы кристаллической решетки. В зависимости от геометрии возникающих при этом дефектов их можно разделить на три группы: точечные, линейные и поверхностные.

Точечные дефекты возникают тогда, когда отдельные, изолированные атомы, молекулы или ионы покидают свои места в узлах кристаллической решетки и переходят или в междоузлие, или на поверхность кристалла, оставляя в решетке незаполненный узел, называемый вакансией. Механизм возникновения точечных дефектов представлен на рис. III.6. Наряду с повышением температуры возникновению точечных дефектов в кристаллах способствуют большие расстояния между узлами их решеток, а также малые размеры самих частиц.

С наличием в структуре ионных кристаллов точечных дефектов существенно связана их электрическая проводимость. Под действием электрического тока ближайший к вакансии ион переходит на ее место, а в точке его прежнего местоположения создается новая вакансия, занимаемая, в свою очередь, соседним ионом. Подобные «перескоки» ионов реализуются с большой частотой, обеспечизая ионную проводимость кристалла. Благодаря точечным дефектам удается объяснить и существование в природе большого числа так называемых «нестехиометрических» соединений (соединений переменного состава), т. е. веществ, состав которых в твердом состоянии отклоняется от их молекулярного состава. Например, кристаллы оксида титана в зависимости от давления кислорода в окружающей среде могут иметь переменный состав от до При избытке атомов титана в кристалле имеется соответствующая концентрация вакансий кислорода, а при избытке атомов кислорода появляются вакансии титана. В кристаллах оксида цинка избыточное содержание атомов цинка объясняют нахождением последних в междоузлиях пространственной решетки.

Сильно влияют на свойства твердых тел точечные примесные дефекты. При образовании последних частицы примесей (молекулы, атомы или ионы) располагаются или в узлах пространственной решетки кристалла, вытесняя из них частицы основного вещества, или занимают места в междоузлиях. Примесные дефекты в кристаллах могут существовать или в нейтральном, или в заряженном состоянии. В определенных условиях атомы примесей могут ионизироваться, существенно изменяя свойства кристалла. В качестве примера рассмотрим состояние примесных атомов алюминия и фосфора в кристаллах кремния. Кремний

Рис. III. 6. Возникновение дефектов кристаллов: а — выход частиц из узла решетки на поверхность кристалла; выход частиц из узла решетки в междоузлие

принадлежит к классу полупроводников и имеет ковалентную кристаллическую решетку типа алмаза (см. рис. III. 2), в которой каждый атом связан с четырьмя соседними атомами электронами, расположенными на гибридных орбиталях.

Как показано на рис. III. 7, примесные атомы алюминия и фосфора замещают атомы кремния в узлах решетки. Энергетическая однородность кристалла при этом нарушается. Атомы алюминия имеют лишь по три валентных электрона, что приводит к дефициту одного электрона в каждом занимаемом ими узле кристаллической решетки. Однако при сообщении атому алюминия небольшой энергии порядка он захватывает недостающий электрон, превращаясь в отрицательно заряженный ион и образуя вблизи себя положительно заряженную дырку. Электрическая нейтральность кристалла при этом сохраняется. Аналогичное алюминию действие оказывают на свойства полупроводниковых кремния и германия примеси и других элементов, таких, как бор, галлий, индий, цинк, железо, марганец. Их называют акцепторными примесями.

Введение в кристаллический кремний примесных атомов фосфора, имеющих по пять валентных электронов, также нарушает энергетическую однородность кристалла. В этих условиях каждый атом фосфора уже при сообщении ему энергии порядка способен ионизироваться, перебрасывая один из своих электронов в зону проводимости и превращаясь в положительно заряженный ион. Аналогично ведут себя в кристаллах

кремния и германия примесные атомы мышьяка, сурьмы и золота, обычно называемые донорными примесями. Для получения полупроводника с определенной концентрацией носителей (электронов или дырок) необходимо, чтобы число собственных переносчиков тока в кристалле было примерно на два порядка ниже.

Рис. III. 7. Решетка кремния с примесями алюминия и фосфора

В отличие от полупроводников электрическая проводимость металлов мало зависит от имеющихся в их структуре примесных дефектов. Однако примесные дефекты могут оказывать существенное влияние на другие свойства металлов. Так, механические характеристики металлов сильно зависят от наличия в их структуре междоузельных примесных дефектов. С учетом плотнейшей упаковки металлических кристаллов в междоузлия способны попадать лишь микрочастицы небольших размеров, такие, как атомы водорода, углерода, кислорода, азота. Кристаллы многих металлов часто поглощают большое количество указанных примесей. Например, количество водорода, поглощенного палладием или цирконием, обычно настолько велико, что его атомы заполняют почти все междоузлия в кристаллах указанных металлов.

Влияние линейных и плоских дефектов на свойства твердых тел.

Более сложным видом нарушений структуры кристалла являются линейные дефекты или дислокации. Их возникновение обусловлено нарушением местоположения целой группы частиц, размещенных вдоль какой-либо воображаемой линии в кристалле. Возникновение дислокаций требует большой энергии, поэтому их число мало зависит от температуры кристалла и в обычных кристаллических образцах имеет порядок в Как правило, дислокации образуются в процессе выращивания кристалла или при его механической и термической обработке.

Различают краевые и винтовые дислокации. Краевая дислокация возникает (рис. III.8, а) за счет появления в объеме кристалла лишней атомной плоскости. Собственно под дислокацией и понимается линия искажения, проходящая вдоль края этой лишней плоскости. На рис. 111.8, б приведен пример винтовой дислокации. Последняя образуется за счет смещения микрочастиц в одной части кристалла по отношению к другой его части, в результате чего вокруг линии дислокации образуется винтообразная плоскость. Дислокации являются причиной пластичности кристаллов. Деформация кристалла обычно совершается за счет движения дислокации в его объеме, что требует

Рис. III.8. Краевые (а) и винтовые (б) дислокации и плоские дефекты (в) кристаллов

меньших затрат энергии, чем можно было бы предположить исходя из энергии его кристаллической решетки.

Еще более сложным видом искажений кристалла служат плоские дефекты. Их наличие приводит к тому, что поликристаллические вещества состоят из определенного набора зерен или блоков, соединенных между собой и ориентированных произвольным образом (рис. III.8, в). Области на границах между зернами имеют искаженную кристаллическую структуру.

Особенности блочной структуры вещества существенно влияют на оптические и электрические характеристики твердого тела, а также на его химическую активность. Вещество на границах зерен и блоков обладает, как правило, повышенной реакционной способностью и может даже отличаться от остального объема зерна по химическому составу.

Наличие дислокаций и плоских дефектов в реальных кристаллах сильно сказывается на механических свойствах твердых тел. Однако это отнюдь не означает, что монокристаллы вещества по прочности всегда будут превосходить его поликристаллические конгломераты. Все будет зависеть от степени взаимодействия дислокаций и плоских дефектов с другими дефектами твердого тела. Так, монокристаллы чистого железа очень пластичны, в то время как стали, имеющие блочную структуру, проявляют прочность в сотни раз большую за счет взаимодействия дислокаций с примесными дефектами. Междоузельные примесные дефекты, как правило, затрудняют движение дислокаций, осложняя механическую обработку металлов. В связи с этим при механической обработке высокопрочных металлов, таких, как титан, молибден, бериллий, вольфрам, обычно проводят их тщательную очистку от примесей азота и кислорода.

КОНТРОЛЬНЫЕ ВОПРОСЫ

(см. скан)

(см. скан)

1
Оглавление
email@scask.ru