Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ XIII.2. СТРОЕНИЕ ПОЛИМЕРОВФорма и структура макромолекул полимеров.Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры образуются при полимеризации мономеров или линейной поликонденсации. Разветвленные полимеры могут образоваться как при полимеризации, так и при поликонденсации. Разветвление полимеров при полимеризации может быть вызвано передачей цепи на макромолекулу, росте боковых цепей за счет сополимеризации и другими причинами. Разветвленные полимеры образуются при поликонденсации многофункциональных соединений, а также в результате прививки к макромолекулам боковых цепей. Прививку проводят либо путем взаимодействия полимеров с олигомерами или мономерами, либо путем физического воздействия (например, Линейные и разветвленные макромолекулы из-за способности атомов и групп атомов вращаться вокруг ординарных связей постоянно изменяют свою пространственную форму, или, другими словами, имеют много конформационных структур. Это свойство обеспечивает гибкость макромолекул, которые могут изгибаться, скручиваться, распрямляться. Поэтому для линейных и разветвленных полимеров характерно высокоэластичное состояние, т. е. способность к обратимой деформации под действием относительно небольших внешних сил. Они также обладают термопластическими свойствами, т. е. способны размягчаться при нагревании и затвердевать при охлаждении без химических превращений. При разветвлении полимеров эластические термопластические свойства становятся менее выраженными. При образовании сетчатой структуры термопластичность теряется. По мере уменьшения длины цепей в ячейках сеток утрачивается и эластичность полимеров, например при переходе от каучука к эбониту. Линейные макромолекулы могут иметь регулярную и нерегулярную структуру. В полимерах регулярной структуры отдельные звенья цепи повторяются в определенной последовательности и располагаются в пространстве в определенном порядке. Полимеры регулярной структуры получили название стереорегулярных. Полимеры, у которых отдельные звенья расположены в пространстве бессистемно, имеют нерегулярную структуру. В качестве примера приведем полипропилен нерегулярной (а) и регулярной
Стереорегулярные полимеры обычно получают методом ионной полимеризации с использованием комплексных катализаторов. Стереорегулярной структурой обладают натуральный каучук, а также некоторые синтетические полимеры, например полиизобутилен, полиэтилен, полипропилен. Стереорегулярность структуры изменяет тепловые и механические свойства полимеров. Кристаллическое состояние полимеров.Большинство полимеров обычно находится в аморфном состоянии. Однако некоторые полимеры в определенных условиях могут иметь кристаллическую структуру. Способностью кристаллизоваться обладают лишь стереорегулярные полимеры. Благодаря регулярной структуре и гибкости макромолекулы могут сближаться друг с другом на достаточно близкое расстояние, чтобы между ними возникли эффективные межмолекулярные взаимодействия и даже водородные связи, которые приводят к упорядочению структуры. Процесс кристаллизации полимера протекает через несколько стадий. На первой стадии возникают пачки — ассоциаты упорядоченно расположенных молекул. Из пачек образуются фибриллы и сферолиты. Фибриллы представляют собой агрегаты пачек продолговатой формы, а сферолиты — игольчатые образования, радиально расходящиеся из одного центра. Наконец, из фибрилл и
Рис. XIII.1. Термомеханическая кривая полимеров сферолитов образуются единичные кристаллы. Кристаллические полимеры состоят из большого числа кристаллов, между которыми находятся участки с неупорядоченной структурой (аморфные области). Поэтому такие полимеры характеризуются определенной степенью кристалличности. Например, степень кристалличности полиэтилена может достигать 80%. Наиболее выражена способность к образованию кристаллов у полиолефинов, полиамидов и полиэфиров. Кристаллическое строение имеет полимер карбин. Свойства кристаллических и аморфных полимеров существенно различаются. Так, аморфные полимеры характеризуются областью температур размягчения, т. е. областью постепенного перехода из твердого состояния в жидкое, а кристаллические полимеры — температурой плавления. Физические состояния аморфных полимеров.Аморфные полимеры могут находиться в стеклообразном, высокоэластическом и вязкотекучем состояниях. Для определения температурных границ существования этих состояний изучают зависимость деформации полимера от температуры, на основании которой строят термомеханическую кривую (рис. XIII.1). При низкой температуре полимер находится в стеклообразном состоянии (рис. XIII. 1, область стеклообразном состоянии. При температуре выше температуры текучести
|
1 |
Оглавление
|