Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ III.4. МЕТАЛЛЫ, ПОЛУПРОВОДНИКИ И ДИЭЛЕКТРИКИОдно из наиболее характерных свойств металлов — высокая электрическая проводимость, обусловленная направленным переносом их электронов в электрическом поле. С другом стороны, имеется большая группа твердых веществ с молекулярной, ионной или ковалентной решеткой, которые образуют класс диэлектриков. Их электрическая проводимость на 20—30 порядков ниже электрической проводимости металлов. Известно большое число веществ, занимающих промежуточное положение между металлами и диэлектриками и относящихся к классу полупроводников. При очень низких температурах полупроводники не проводят электрический ток, т. е. являются типичными диэлектриками. Однако по мере роста температуры отмечается возрастание их электрической проводимости. Любая теория твердого тела должна удовлетворительно объяснить наблюдающиеся огромные различия в электрической проводимости веществ, принадлежащих разным классам. К сожалению, ни теория ковалентной связи, рассматривающая электроны, принадлежащие лишь данной химической связи, как в ковалентных кристаллах, ни модель свободного электрона в металлах не в состоянии объяснить изменение электрической проводимости твердых тел больше чем на два порядка. С этой точки зрения применение в теории твердого тела квантово-механических представлений может быть весьма успешным. Зонная теория кристаллов.В модели свободного электрона волновое движение электрона может осуществляться по любому направлению и будет ограничиваться лишь размерами кристалла. Для простоты ограничимся одномерной задачей, рассматривая движение электрона лишь вдоль одной оси (одномерный ящик). Решение уравнения Шредингера для такого свободного электрона дает следующее выражение для его энергии:
где Из формулы (III.4) видно, что с увеличением размеров кристалла разность энергий соседних уровней электрона будет уменьшаться. При большом числе энергетических уровней разность между ними будет настолько мала, что они образуют почти непрерывную зону энергий. В процессе образования кристалла происходит перекрывание внешних электронных орбиталей атомов по аналогии с образованием химической связи в молекулах. В соответствии с методом Аналогично можно объяснить и действие приложенного к кристаллу электрического поля. Оно несколько изменяет относительные энергии орбиталей в зоне, понижая одни уровни и повышая другие (по отношению к силовым линиям поля). Это в свою очередь приводит к направленному переносу электронов на энергетически более выгодные орбитали, т. е. вызывает электронную проводимость кристалла. С позиций квантовой механики орбиталь, занимаемая электроном, характеризует его полную энергию. Переходя с одного уровня на другой в зоне проводимости, электрон приобретает дополнительную энергию, за счет которой он ускоряется в силовом поле. Какую же максимальную энергию способен приобрести электрон в твердом теле? Этот вопрос тесно связан с определением ширины энергетических зон в кристалле, т. е. разности энергий между самой высшей и самой низшей орбиталями в зоне. Ширина энергетической зоны зависит от характера электронных орбиталей взаимодействующих атомов Количество взаимодействующих атомных орбиталей не влияет на ширину зоны, а определяет лишь плотность ее заполнения электронами. Ширина энергетических зон в твердых телах существенно зависит от внутренней структуры их кристаллов. Эта зависимость тесно связана с волновой природой движения электронов. Перемещаться по кристаллу способны лишь те электроны, длины волн которых не укладываются целое число раз между узлами кристаллической решетки. Электроны с длиной волны, равной Таким образом, в кристаллах между энергетическими зонами, образованными взаимодействиями атомных орбиталей разного характера, могут возникать области запрещенных энергий, называемые запрещенными зонами. Теория, объясняющая свойства твердых тел на основании анализа строения и плотности заполнения электронами энергетических зон в их кристаллах, называется зонной теорией. Металлы.Рассмотрим в соответствии с положениями зонной теории энергетическую структуру металлов. На рис. II 1.5, а показано образование зон в кристалле натрия. Внутренние электронные орбитали атомов, в частности В зоне проводимости, образованной за счет взаимодействия З-орбиталей, N атомов натрия образуют такое же число энергетических уровней. Так как у каждого атома натрия имеется лишь по одному валентному электрону, при низких температурах в зоне проводимости будет заполнена только половина уровней. Большое число незанятых энергетических уровней в зоне приводит к высокой подвижности электронов и обеспечивает высокую электрическую проводимость металлического натрия. Аналогичное строение зоны проводимости имеют кристаллы и других элементов первой группы периодической системы элементов, причем ширина зоны проводимости максимальна у элементов побочной
Рис. III. 5. Возникновение энергетических зон кристалла из энергетических уровней атомов по мере их сближения: а натрий; б — алмаз подгруппы: меди, серебра и золота, а у элементов главной подгруппы ширина зоны убывает с ростом их порядкового номера. Итак, с точки зрения зонной теории металлические свойства проявляют те твердые тела, в кристаллах которых зона проводимости заполнена электронами лишь частично. При этом в переносе электричества будут участвовать не все электроны, находящиеся в зоне, а лишь те, для которых доступны незанятые орбитали с низкой энергией. Так, при нагревании металла тепловое возбуждение перемещает электроны с низкой энергией на более высокие энергетические уровни и тем самым ограничивает их возможность участвовать в переносе тока. В кристаллическом натрии происходит перекрывание зон, образованных 3s- и 3р-орбиталями. Для металлов первой группы это перекрывание не играет существенной роли, так как число свободных орбиталей в локализованных d-электронов. Последние придают металлической связи в кристаллах d-элементов частично ковалентный характер. Так, малую химическую активность металлов, расположенных близко к концам периодов, качественно можно объяснить значительной ролью, которую играют в их кристаллах направленные ковалентные связи. Поэтому d-элементы иногда называют переходными металлами в отличие от типичных металлов главных подгрупп. Электрическая проводимость кристаллов d-элементов обеспечивается главным образом электронами внешних Диэлектрики и полупроводники.Рассмотрим применение зонной теории к кристаллам с ковалентными связями. При формировании подобных кристаллов наружные электронные орбитали их атомов, взаимодействуя, также образуют энергетические зоны. Однако направленный характер ковалентных связей приводит к тому, что симметрия кристалла полностью изменяет характер волновых функций электронов взаимодействующих атомов. У атомов подавляющего большинства элементов, образующих ковалентные кристаллы (углерод, кремний, германий, серое олово), во внешнем квантовом слое имеются четыре орбитали: одна Из условий минимума энергии все валентные электроны атомов углерода заполняют нижнюю зону, а так как их число составляет 4, то эта зона (ее называют валентной) оказывается заполненной полностью. Зона же проводимости кристалла пуста. Для перехода в эту зону электронам необходимо сообщить энергию порядка 7 эВ Если же ширина запрещенной зоны относительно невелика, то при сообщении твердому телу определенного количества энергии часть его электронов может переброситься из полностью заполненной валентной зоны в зону проводимости и принять участие в переносе тока. Подобные вещества называют собственными полупроводниками. Так, у типичных собственных полупроводников германия и кремния ширина запрещенной зоны при 0 К соответственно составляет 0,75 и 0,21 эВ (73 и 137 кДж/моль). Особенность собственных полупроводников состоит в том, что при переходе части электронов в зону проводимости в валентной зоне появляется эквивалентное им число так называемых дырок, имеющих положительный заряд, которые также могут участвовать в переносе тока. Собственные полупроводники имеют электронно-дырочную проводимость. Наряду с собственными большое распространение получили также полупроводники примесного типа. В них основное число переносчиков тока — электронов или дырок — поставляют введенные в собственный полупроводник специальные примеси, энергетические уровни которых располагаются между валентными зонами и зонами проводимости полупроводника. Так, при введении в кристалл германия так называемых донорных примесей, как, например, фосфора, мышьяка, сурьмы, электроны последних переходят в зону проводимости полупроводника, резко увеличивая в ней число электронов — переносчиков тока (п-про-водимость). При добавлении к германию акцепторных примесей типа бора, алюминия, индия электроны валентной зоны полупроводника переходят на свободные уровни зоны примесей, что увеличивает число дырок (р-проводимость) в валентной зоне. При 0 К полупроводники представляют собой типичные диэлектрики, так как их зона проводимости пуста. При нагревании их проводимость растет, так как все большее число электронов перебрасывается в зону проводимости. Температурная зависимость электрической проводимости полупроводников обратна аналогичной зависимости для металлов. Большая часть ионных кристаллов относится к классу диэлектриков. Изучение проводимости этих кристаллов позволило установить основные черты их зонной структуры. Особенность ионных кристаллов состоит в том, что они образованы при взаимодействии атомов разных элементов, внешние электронные орбитали которых имеют неодинаковую энергию. Так как зона образуется взаимодействием близких по энергии орбиталей, в ионных кристаллах всегда имеется две раздельные внешние зоны с большей и меньшей средней энергией. Как и в ковалентных кристаллах, валентные электроны взаимодействующих атомов полностью заполняют зону с более низкой энергией (валентная зона). Зона же проводимости, образованная внешними орбиталями второго атома, пуста, и переброс в нее электронов требует затраты энергии. В кристалле Наконец, все твердые вещества типа молекулярных кристаллов принадлежат к классу диэлектриков. Перекрывание электронных орбиталей взаимодействующих частиц в их кристаллах ничтожно мало. В связи с этим состояние электронов у частиц, занимающих узлы пространственных решеток в таких кристаллах, мало отличается от состояний в соответствующих свободных атомах и молекулах.
|
1 |
Оглавление
|