Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ ХI.3. ПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВПри замещении одного или нескольких атомов водорода в углеводородах на другие атомы или группы атомов, называемых функциональными группами, получают производные углеводородов: галогенопроизводные, спирты, альдегиды, кетоны, кислоты и т. д. Введение той или иной функциональной группы в состав соединения, как правило, коренным образом изменяет его свойства. Например, введение карбокси-группы — группа. Например, карбоновую кислоту в общем виде можно представить формулой Галогенопроизводные углеводородов.Формулу галогенопроизводного углеводорода можно представить в виде Вследствие высокой теплоты испарения, негорючести, нетоксичности и химической инертности фтороуглероды и смешанные галогенопроизводные нашли применение в качестве рабочих тел в холодильных устройствах — хладонов (фреонов), например: Галогенопроизводные предельных углеводородов, например Спирты и фенолы.Спирты — это производные углеводородов, у которых один или несколько атомов водорода замещены на гидроксидные группы. В зависимости от углеводородов, спирты подразделяются на предельные и непредельные, по числу гидроксидных групп в соединении различают одноатомные (например, вторичные Название спиртов получают добавлением суффикса
Из-за полярности связи кислород — водород молекулы спиртов полярны. Низшие спирты хорошо растворимы в воде, однако по мере увеличения числа атомов углерода в углеводородном радикале влияние гидроксидной группы на свойства уменьшается и растворимость спиртов в воде понижается. Молекулы спиртов ассоциированы из-за образования водородных связей между ними, поэтому температуры их кипения выше температур кипения соответствующих углеводородов. Спирты являются амфотериыми соединениями, при воздействии щелочных металлов образуются легко гидролизуемые алкоголяты:
При взаимодействии с галогеноводородными кислотами происходит образование галогенопроизводных углеводородов и воды:
Однако спирты — очень слабые электролиты. Простейшим из предельных спиртов является метанол
Учитывая относительную простоту синтеза метанола, возможность получения исходных реагентов из угля, некоторые ученые предполагают, что метанол в будущем найдет более широкое применение в технику, в том числе в транспортной энергетике. Смесь метанола и бензина может быть эффективно использована в двигателях внутреннего сгорания. Недостатком метаиола является его высокая токсичность. Этанол
Исходным сырьем в этом случае служат либо пищевые продукты, либо целлюлоза, которую гидролизом превращают в глюкозу. В последние годы все более широкое применение получает метод каталитической гидратации этилена:
Использование метода гидролиза целлюлозы и гидратации этилена позволяет экономить пищевое сырье. Хотя этанол один из наименее токсичных спиртов, однако из-за него гибнет значительно больше людей, чем из-за любого другого химического вещества. При замещении водорода ароматического кольца на гидроксидную группу образуется фенол. Под влиянием бензольного кольца полярность связи кислород — водород возрастает, поэтому фенолы диссоциируют в большей степени, чем спирты, проявляют кислотные свойства. Атом водорода в гидроксидной группе фенола может быть замещен на катион металла под воздействием основания:
Фенол широко используется в промышленности, в частности служит сырьем для получения фенолформальдегидных полимеров. Альдегиды и кетоны.При окислении и каталитическом дегидрировании спиртов можно получить альдегиды и кетоны — соединения, содержащие карбонильную группу
Как видно, при окислении или дегидрировании первичного спирта получается альдегид, вторичного спирта — кетон. Атом углерода карбонильной группы альдегидов связан с одним атомом водорода и с одним атомом углерода (радикалом). Атом углерода карбонильной группы кетонов связан с двумя атомами углерода (с двумя радикалами). Названия альдегидов и кетонов производят от названий углеводородов, прибавляя суффиксы -аль в случае альдегида и -он в случае кетона, например:
Связь кислород — углерод карбонильной группы альдегидов сильно поляризована, поэтому альдегиды характеризуются высокой реакционной способностью, они являются хорошими восстановителями, легко вступают в реакции замещения, присоединения, конденсации и полимеризации. Простейший альдегид — метаналь (формальдегид или муравьиный альдегид) самопроизвольной полимеризации. Его применяют для получения фенолформальдегидных и мочевиноформальдегидных смол и полиформальдегида. Кетоны обладают меньшей реакционной способностью, чем альдегиды, так как карбонильная группа менее полярна. Поэтому они труднее окисляются, восстанавливаются и полимеризуются. Многие кетоны, в частности ацетон, являются хорошими растворителями. Карбоновые кислоты.У карбоновых кислот функциональной является карбоксильная группа -СООН. В зависимости от числа карбоксильных групп в молекуле кислоты их подразделяют на одно-, двух- и многоосновные, а в зависимости от радикала, связанного с карбоксильной группой, — на алифатические (предельные и непредельные), ароматические, алициклические и гетероциклические. По систематической номенклатуре названия кислот производят от названия углеводорода, добавляя окончание -овая и слово кислота, например Однако часто применяют тривиальные названия, сложившиеся исторически, например:
Кислоты обычно получают окислением альдегидов. Например, при гидратации ацетилена с последующим окислением образующегося ацетальдегида получают уксусную кислоту:
Недавно был предложен способ получения уксусной кислоты, основанный на реакции метанола с монооксидом углерода в присутствии родиевого катализатора
Кислотные свойства карбоксильной группы обусловлены отщеплением протона при электролитической диссоциации кислот. Отщепление протона связано со значительной поляризованностью связи О-Н, вызванной смещением электронной плотности от атома углерода к атому кислорода карбоксильной группы
Все карбоновые кислоты — слабые электролиты и в химическом отношении ведут себя подобно неорганическим слабым кислотам. Они взаимодействуют с оксидами и гидроксидами металлов, образуя соли. К одной из особенностей карбоновых кислот можно отнести их взаимодействие с галогеном, приводящее к образованию галогенозамещенных карбоновых кислот. Из-за присутствия галогенов в молекуле кислоты происходит поляризация связи О-Н, поэтому галогенозамещенные кислоты являются более сильными, чем исходные карбоновые кислоты. Со спиртами кислоты образуют сложные эфиры
При замещении гидроксидной группы кислот на аминогруппу
Карбоновые кислоты широко применяются в технике. Некоторые из них являются исходными соединениями для получения волокон, пленок и лаков. Например, терефталевая кислота используется для получения лавсана и терилена, адипиновая кислота Амины.При замещении в аммиаке водорода на органические радикалы получают амины. По числу замещаемых радикалов различают первичные
При взаимодействии с кислотами они образуют соли
Амины являются исходным сырьем для получения красителей, высокомолекулярных и других соединений. КОНТРОЛЬНЫЕ ВОПРОСЫ(см. скан)
|
1 |
Оглавление
|