Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава XIII. ПОЛИМЕРНЫЕ МАТЕРИАЛЫ И ИХ ПРИМЕНЕНИЕ В ЭНЕРГЕТИКЕПолимеры — высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называемые также макромолекулами, состоят из большого числа повторяющихся звеньев. Вследствие большой молекулярной массы макромолекул полимеры приобретают некоторые специфические свойства. Поэтому они выделены в особую группу химических соединений. Отдельную группу также составляют олигомеры, которые по значению молекулярной массы занимают промежуточное положение между низкомолекулярными и высокомолекулярными соединениями. Различают неорганические, органические и элементоорганические полимеры. Органические полимеры в свою очередь подразделяются на природные и синтетические. В настоящей главе рассматриваются в основном органические синтетические полимеры. § XIII.1. МЕТОДЫ ПОЛУЧЕНИЯ ПОЛИМЕРОВПолимеры получают методами полимеризации или поликонденсации. ПолимеризацияПолимеризация — это реакция образования полимеров путем последовательного присоединения молекул низкомолекулярного вещества (мономера). При полимеризации не образуются побочные продукты и соответственно элементный состав макромолекул не отличается от состава молекул мономеров. В качестве мономеров используются соединения с кратными связями:
В процессе полимеризации происходит разрыв кратных связей или раскрытие циклов у мономеров и возникновение химических связей между группами с образованием макромолекул, например:
По числу участвующих мономеров различают гомополимеризацию (один вид мономера) и сополимеризацию (два и более видов мономеров). Полимеризация — самопроизвольный экзотермический процесс При радикальной полимеризации процесс инициируется свободными радикалами. Реакция проходит через несколько стадий: а) инициирование; б) рост цепи; в) передача или обрыв цепи. а) Инициирование — образование активных центров — радикалов и макрорадикалов — происходит в результате теплового, фотохимического, химического, радиационного или других видов воздействий. Чаще всего инициаторами полимеризации служат пероксиды, азосоединения (имеющие функциональную группу
Затем образуются макрорадикалы, например при полимеризации хлорвинила:
т.д. б) Рост цепи происходит за счет присоединения к радикалам образующихся мономеров с получением новых радикалов. в) Передача цепи заключается в переносе активного центра на другую молекулу (мономер, полимер, молекулы растворителя):
В результате рост цепи прекращается, а молекул а-передатчик, в данном случае молекула мономера, инициирует новую реакционную цепь. Если передатчиком служит полимер, то может произойти разветвление цепи. В стадии обрыва цепи происходит взаимодействие радикалов с образованием валентнонасыщенных молекул:
Обрыв цепи может также произойти при образовании малоактивных радикалов, которые не способны инициировать реакцию. Такие вещества называют ингибиторами. Таким образом, регулирование длины и соответственно молекулярной массы макромолекул можно осуществлять с помощью инициаторов, ингибиторов и других веществ. Тем не менее передача и обрыв цепи могут происходить на различных этапах роста цепи, поэтому макромолекулы имеют различную молекулярную массу, т. е. полидисперсны. Полидисперсность является отличительной особенностью полимеров. Радикальная полимеризация служит промышленным способом синтеза многих важных полимеров, таких, как поливинилхлорид Ионная полимеризация также проходит через стадию образования активных центров, роста и обрыва цепи. Роль активных центров в этом случае играют анионы и катионы. Соответственно различают анионную и катионную полимеризацию. Инициаторами катионной полимеризации служат электроноакцепторные соединения, в том числе протонные кислоты, например
Рост цепи можно записать уравнениями реакции
при катионной полимеризации и
при анионной полимеризации. Рассмотрим в качестве примера катионную полимеризацию изобутилена с инициаторами
Обозначив этот комплекс формулой
Образующийся комплексный катион вместе с противоионом
С помощью некоторых комплексных инициаторов удается получить полимеры, имеющие регулярную структуру (стереорегулярные полимеры). Например, таким комплексным инициатором может быть комплекс тетрахлорида титана и триалкилалюминия Метод ионной полимеризации используется в производстве полиизобутилена Методом полимеризации получают Полимеризация в массе (в блоке) — это полимеризация жидкого мономера (мономеров) в неразбавленном состоянии. При этом получают достаточно чистый полимер. Основная сложность проведения процесса связана с отводом теплоты. При полимеризации в растворе мономер растворен в растворителе. При таком способе полимеризации легче отводить теплоту и регулировать состав и структуру полимеров, однако возникает задача удаления растворителя. Эмульсионная полимеризация (полимеризация в эмульсии) заключается в полимеризации мономера, диспергированного в воде. Для стабилизации эмульсии в среду вводят поверхностноактивные вещества. Достоинство способа — легкость отвода теплоты, возможность получения полимеров с большой молекулярной массой и высокая скорость реакции, недостаток — необходимость отмывки полимера от эмульгатора. Способ широко применяется в промышленности для получения каучуков, полистирола, поливинилхлорида, поливинилацетата, полиметилакрилата и др. При суспензионной полимеризации (полимеризации в суспензии) мономер находится в виде капель, диспергированных в воде или другой жидкости. В результате реакции образуются полимерные гранулы размером от При газовой полимеризации мономер находится в газовой фазе, а полимерные продукты — в жидком или твердом состоянии. Метод применяется для получения полипропилена и других полимеров. Поликонденсация.Реакция синтеза полимера из соединений, имеющих две или более функциональные группы, сопровождающаяся образованием низкомолекулярных продуктов (
Конечным продуктом будет поли-е-капроамид (капрон) Поликонденсация соединений с тремя или более функциональными группами называется трехмерной. Примером трехмерной поликонденсации служит взаимодействие мочевины и формальдегида:
На первом этапе синтезируется олигомер линейной структуры
На втором этапе при нагревании в кислой среде происходит дальнейшая поликонденсация олигомера с выделением
Такой полимер невозможно превратить в исходное состояние, он не обладает термопластичными свойствами и называется термореактивным полимером. Так как в процессе поликонденсации наряду с высокомолекулярными образуются низкомолекулярные продукты, то элементные составы полимеров и исходных веществ не совпадают. Этим поликонденсация отличается от полимеризации. Поликонденсация протекает по ступенчатому механизму, при этом промежуточные продукты являются стабильными, т. е. поликонденсация может остановиться на любой стадии. Образующиеся низкомолекулярные продукты реакции
Поэтому низкомолекулярные продукты приходится удалять из реакционной среды. Монофункциональные соединения, присутствующие в реакционной среде, взаимодействуют с промежуточными продуктами, образуя нереакционноспособные соединения. Это приводит к обрыву цепи, поэтому исходные мономеры должны быть очищены от монофункциональных соединений. Монофункциональные соединения могут образоваться в ходе реакции из-за термической или окислительной деструкции промежуточных соединений. Это приводит к остановке реакции поликонденсации и уменьшению молекулярной массы полимера. Поликонденсацию проводят либо в расплаве, либо в растворе, либо на межфазной границе. Поликонденсацию в расплаве ведут без растворителей, нагревая мономеры при температуре на При поликонденсации в растворе используют растворитель, который также может служить абсорбентом низкомолекулярного продукта. Межфазная поликонденсация происходит на границе раздела фаз газ — раствор или двух несмешивающихся жидкостей и обеспечивает получение полимеров с высокой молекулярной массой. Методом поликонденсации получают примерно четвертую часть выпускаемых полимеров, например поликапроамид (капрон), полигексаметиленадипинамид (найлон)
мочевиноформальдегидные смолы и др.
|
1 |
Оглавление
|