§ 2.9. Нестационарные линейные системы
Нестационарными линейными системами или линейными системами с переменными параметрами называют системы, которые описываются линейными дифференциальными уравнениями с переменными коэффициентами. Для их Описания помимо
мимо дифференциальных уравнении могут быть использованы передаточные функции, переходные и весовые (импульсные переходные) функции, частотные функции и их характеристики. Кроме того, для графического представления нестационарных систем могут быть использованы структурные схемы и графы. Однако методы, основанные на графических представлениях, не так эффективны, как в случае стационарных систем. Правила преобразования структурных схем и графов, установленные при изучении стационарных систем, в случае нестационарных систем несправедливы.
Рассмотрим некоторые способы описания одномерных нестационарных систем. Они могут быть обобщены на многомерные системы так, как это было сделано при описании стационарных линейных систем.
Так как для линейных систем (как стационарных, так и нестационарных) справедлив принцип суперпозиции, тодля простоты можем ограничиться рассмотрением систем с одним входом.
Уравнение одномерной нестационарной системы (объекта) с одним входом в общем случае можно записать в виде
или, в символической (операторной) форме
где нестационарные линейные дифференциальные операторы
Весовые функции.
Как уже было определено, весовой функцией называют решение уравнения (2.92) при и
и нулевых «начальных» условиях, т. е. функцию, которая описывает реакцию на единичный импульс системы, находящейся в момент приложения импульса в исходном состоянии. Здесь
обозначает момент приложения импульса и в определении под начальными условиями понимают значения выходной величины и ее производных в момент т. При рассмотрении стационарных систем обычно в качестве начала отсчета времени принимают
системы в фиксированный момент t от моменту
приложения единичного импульса.