Главная > Теория автоматического управления, Ч.I (Воронов А.А.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Квазистационарные системы.

Если коэффициенты уравнения (2.92) нестационарной системы изменяются медленно, то такую систему называют квазистационарной. При описании квазистационарных систем широко используют метод замороженных коэффициентов. Этот метод является приближенным, и основан он на «замораживании» коэффициентов: в уравнении нестационарной системы переменные коэффициенты заменяются постоянными коэффициентами равными значениями исходных коэффициентов в какой-либо фиксированный момент времени Передаточная функция системы с замороженными коэффициентами равна нулевому приближению (2.109) передаточной функции нестационарной системы при фиксированном времени

Принимается что коэффициенты уравнения нестационарной системы изменяются медленно (система квазистационарна), если за время переходного процесса они изменяются незначительно. Здесь под временем переходного процесса понимается минимальное время, по истечении которого (с момента приложения единичного импульса) абсолютные значения весовой функции системы с замороженными коэффициентами не превышают некоторой заданной достаточно малой положительной величины.

Если промежуток времени, на котором рассматривают процесс квазистационарной системы, является большим, то изменения коэффициентов ее уравнения могут быть значительными. Тогда при использовании метода замороженных коэффицентов весь промежуток времени разбивают на несколько интервалов и на каждом интервале систему описывают уравнениями с постоянными коэффициентами, равными значениям переменных коэффициентов в какой-либо момент времени, из рассматривает мого интервала.

1
Оглавление
email@scask.ru