Главная > Теория возможностей. Приложения к представлению знаний в информатике
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.1.2 ПРИНЦИП ОБОБЩЕНИЯ

В этом разделе ставится следующая задача: как по заданным невзаимодействующим (см. разд. 1.8) возможностным переменным X,Y,Z, ... каждая из которых характеризуется нечеткой величиной, ограничивающей ее область определения, вычислить нечеткую величину, которая ограничивает область определения переменной где - заданная функция, принимающая действительные значения.

Для ее решения рассмотрим два множества и а также отображение из в Предположим, что в пространстве задана мера доверия множество обычных подмножеств на котором определена мера Тогда с помощью обратного отображения можно построить функцию множества индуцируемую этим отображением:

где Легко проверить, что функция множества является мерой неопределенности в

Хорошо известен частный случай применения формулы (2.4), когда вероятностная мера. Если — вероятностная мера на борелевской -алгебре подмножеств множества определяющая случайную переменную X, то называется функцией случайных переменных. Зная функцию распределения связанную с вероятностной мерой ищем функцию распределения или по формуле (см., например, [21]).

В настоящей книге рассматривается случай, когда являемся мерой возможности Тогда формула (2.4) принимает вид

где — функция распределения возможностей, связанная с мерой возможности Отметим, что здесь можно выбрать (следовательно,

Функция множества действительно является мерой возможности, поскольку При этом функция распределения возможностей связанная с мерой возможности имеет вид

Выражение (2.6) хорошо известно в теории нечетких множеств под названием принципа обобщения (Заде [24, 25]).

Формулу (2.4) можно применять и для построения меры необходимости двойственной мере П. Таким образом построенная функция множества действительно является мерой необходимости причем эта мера двойственна мере поскольку когда — отображение. Следовательно, мера необходимости также выражается через распределение возможности по формуле (1.14).

Когда имеется декартово произведение а функция сепарабельна, выражается в форме где - нечеткие множества, ограничивающие область изменения невзаимодействующих переменных (см. разд 1.8), то принцип обобщения записывается в виде

Здесь функция описывает распределение возможностей, ограничивающее область определения переменной т. е. нечеткое множество, обозначаемое с функцией принадлежности Очевидно, что когда нечеткие множества вырождаются в одноточечные множества то также является одноточечным множеством

Нечеткое множество можно построить с помощью -срезов поскольку в [20] показано, что

Однако в общем случае для любого не выполняется равенство Имеем лишь отношение вложенности

В работе [20] показано, что равенство в формуле (2 9) получается тогда, и только тогда, когда в выражении (2.7) верхняя грань достигается для любого и

Более того, если рассматриваются строгие -уровни, то всегда выполняется равенство [19]

Принцип обобщения естественным образом расширяется на случай, когда является нечетким отношением рассматриваемым как многозначная функция, которая каждому элементу ставит в соответствие нечеткое множество возможных образов, определяемое так

Тогда принцип обобщения записывается в виде

известном под названием - композиции и обозначаемом символом , причем обозначения и эквивалентны.

Пусть — нечеткое отношение, определенное на декартовом произведении . Тогда свойство ассоциативности нечетких отношений записывается в виде

где — нечеткое отношение на , определяемое как

Важный частный случай этого свойства ассоциативности получается, если в качестве и берутся однозначные функции и что записывается в виде

1
Оглавление
email@scask.ru