Главная > Феймановские лекции по гравитации
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Сражение с бесконечностями

Не являлось секретом то, что объединение гравитации и квантовой механики должно быть сопряжено с огромными усилиями. Когда поле квантуется, каждая мода поля обладает энергией нулевой точки. Так как поле формируется бесконечным числом мод, вакуумная энергия квантового поля является бесконечной. От этой бесконечности легко отделаться нормальным упорядочиванием полевых операторов. Оправдание этому в том, что мы просто переопределяем нулевую точку масштаба энергии, который прежде всего является произвольным. Тем не менее, так как гравитация взаимодействует со всей энергией, то когда мы добавляем гравитацию, то мы не можем больше уйти от этого. Вакуумные флуктуации квантованных полей действительно порождают физические эффекты, так что даже если мы обрезаем некоторое количество мод, плотность энергии вакуума от энергии нулевых точек оставшихся мод может быть очень большой. Такая плотность вакуумной энергии будет появляться в теории гравитации как космологическая постоянная. Так как космологическая постоянная очень мала, то это составляет большую проблему [Wein 89].

Далее, константа гравитационного взаимодействия в единицах, где имеет размерность (энергия) . Теории, где константа взаимодействия имеет положительное значение, часто оказываются конечными, в то время как те теории, в которых константа является неопределенной величины, являются кандидатами на то, чтобы быть перенормируемыми. Теории с отрицательными значениями этих констант обычно имеют расходимости по всем местам, где требуется бесконечное число параметров для того, чтобы устранить все расходимости, и, следовательно, эти теории являются неперенормируемыми. Квантовая общая теория относительности попадает в эту последнюю категорию.

В процессе перенормировки, контрчлены порождаются для того, что сократить высокоэнергетические или ультрарелятивистские расходимости, которые встречаются в отдельных членах теории возмущений. Когда процесс перенормировки является успешным, контрчлены приводят к построению конечного эффективного действия, что может мыслиться как классическая полевая теория, которая содержит все квантовые эффекты (см., например, [Hatf 92]). Возможные контрчлены согласуются с симметриями исходного "обнаженного" действия.

Другими словами, внутренние симметрии сильно ограничивают типы контрчленов, которые могут порождаться и, следовательно, число соответствующих расходимостей. Таким образом, теории с большей симметрией, как правило, обладают лучшей сходимостью.

Имеется чрезвычайно много возможных контрчленов, которые согласуются с известными симметриями для пертурбативной квантовой гравитации, например, члены пропорциональные и т.д. Лишь только была обнаружена необходимость введения ковариантных духов и стали известны ковариантные правила для вычисления членов теории возмущений до произвольного порядка ([DeWi 67а, DeWi 67b], [FaPo 67]), стало очевидным, что в полной мере будет иметь место закон Мерфи для квантовой теории поля (если нет симметрии для того, чтобы "убить" контрчлен, тогда будет иметь место расходимость), и теория наиболее вероятно будет неперенормируема. Проблеск надежды на таком пути появился, когда было показано, что чистая квантовая гравитация в однопетлевом приближении (первая квантовая поправка) является конечной [tHVe 74], [Коrе 74]. Контрчлены для плотности лагранжиана есть

На классическом уровне эти контрчлены обращаются в нуль для чистой гравитации, так как тогда мы имеем . Тем не менее, нет основания для того, чтобы чистая однопетлевая квантовая гравитация являлась бы конечной. Основание для того, чтобы теория являлась бы конечной, состоит в том, что С может исчезать в однопетлевом приближении при переопределении метрики, отсюда следует, что ее эффекты не являются физически наблюдаемыми. Напомним, что для чистой гравитации вариационный принцип

который, используя Принцип Наименьшего Действия, порождает классические полевые уравнения для чистой гравитации. Если мы переопределим метрику следующим образом:

тогда

где - двупетлевые процессы, отсюда следует, что однопетлевая теория является конечной. Когда материальные поля взаимодействуют с гравитацией, однопетлевая теория не является более конечной, даже на классическом уровне.

Надежда состояла в том, что имелся некоторый вид скрытой симметрии, что делало результат в однопетлевом приближении конечным, и что эта симметрия сможет представить чисто гравитационный сектор конечной теории. Тем не менее, компьютерное вычисление двупетлевых поправок дало расходящийся результат [GoSa 86], разрушающий эту надежду. Недавние обзоры по ультрафиолетовым расходимостям можно найти в работах [Wein 79] и [Alva 89].

Единственный способ получить улучшенное поведение теории в ультрафиолетовой области состоит в том, чтобы иметь больше симметрии, встроенной в теорию. Таким образом, обобщения или модификации общей теории относительности для того, чтобы улучшить квантовое поведение теории, основываются главным образом на дополнительных симметриях. Один из популярных подходов называется "супергравитацией" (см., например, [vanN 81]). Этот подход основан на симметрии между бозонными и фермионными полями и называется "суперсимметрией". Когда суперсимметричная теория калибруется таким образом, что эта суперсимметрия становится локальной (различные преобразования суперсимметрии разрешаются в каждой точке пространства-времени), калибровочная инвариантность с необходимостью включает в себя Принцип Общей Ковариантности и, следовательно, гравитацию. По существу, каждое бозонное поле имеет суперсимметричного фермионного партнера и обратно. Ультрафиолетовое поведение теории улучшается, поскольку часто обычный расходящийся бозонный (фермионный) вклад от петель сокращается фермионным (бозонным) вкладом суперпартнера. Другими словами, суперсимметрия строго ограничивает типы контрчленов, которые могут быть порождены. К сожалению, когда размерность пространства-времени равна 4, имеются еще потенциальные контрчлены (начиная с семи петель в наилучшем случае). В то же самое время никто не знает наверняка какого-либо рода дополнительную или скрытую симметрию или какое-либо волшебство, возникающее для того, чтобы сделать теорию конечной.

В настоящее время наиболее многообещающим кандидатом теории квантовой гравитации является струнная теория. Струнная теория есть квантовая теория, в которой составной частью являются одномерные протяженные объекты (как противопоставление точечным частицам в обычной квантовой теории поля), см., например, [GSW 87], [Hatf 92]). Если струнная теория используется для того, чтобы унифицировать все фундаментальный силы (т.е. это "теория всего"), тогда основная идея состоит в том, что вещество делается из очень маленьких струн, чей размер порядка длины Планка.

На обычных энергетических масштабах такие струны будут неразрешимы и неотличимы от точек. Унификация достигается в том, что все частицы, которые мы находим, являются только возбуждениями одной и той же струны. Одна мода осцилляций струны является безмассовой со спином, равным 2, и может идентифицироваться как гравитон, отсюда следует, что струнная теория с необходимостью содержит квантовую гравитацию. Такое возбуждение в струнной теории проистекает из открытия того, что существуют пертурбативные решения, которые математически самосогласованы или свободны от аномалий, и оказываются конечными порядок за порядком в рядах теории возмущений.

Интуитивно улучшенное ультрафиолетовое поведение струнной теории возникает потому, что струнная теория включает в себя гигантскую симметрию (модулярную инвариантность). Теория струн модифицирует гравитацию точечной частицы на малом расстоянии путем обмена состояниями массивной струны, что подобно тому, как теория электрослабого взаимодействия улучшает ультрарелятивистское поведение старой 4-фермионной теории слабого взаимодействия путем замены 4 - фермионной вершины с заменой массивных калибровочных бозонов W и . Константа связи в старой теории Ферми обладает отрицательной величиной массы, и эта теория неперенормируема. Калибровочная теория электрослабого взаимодействия заменяет эту связь безразмерными константами связи, связанными с обменом бозоном, и теория становится перенормируемой. Струнная теория также вводит новую константу связи, натяжение струны Т, которое в обычных единицах эквивалентно обратному квадрату длины Напомним, что единственный масштаб длины, который может быть построен с помощью гравитационной постоянной G, h и скоростью света с, это планковский масштаб . Естественный выбор единиц для струны делает скорость света и натяжение струны безразмерными, . В этих единицах (исключая из приведенных выше выражений для L и ), гравитационная константа будет безразмерной, .

Одним любопытным свойством теории струн, которое сильно отличает ее от теории точечных частиц, состоит в том, что размерность пространства-времени не является внутреннем свойством самой теории. На самом деле, размерность пространства-времени есть свойство частного решения. Свободные от аномалий решения при N=1 мировом листе суперсимметрии могут быть найдены при размерности пространства-времени D меньшей или равной, чем так называемая критическая размерность которая равна быть может 10.

К сожалению, в то время как отдельные члены в рядах теории возмущений являются конечными, сумма ряда расходится [GrPe 88]. И в то время, как теория струн является вероятно единственной в своем роде, решения этой теории определенно не являются такими. Не существует пертурбативного механизма для того, чтобы выбрать частное решение или выбрать правильный вакуум. В этом смысле, пертурбативная формулировка теории струн теряет свою предсказательную силу. Подобно этому, мир не является суперсимметричным при обычных значениях энергии. Нет такого пертурбативного механизма, чтобы выбрать решения, которые бы допускали несуперсимметричные низкоэнергетичные спектры.

1
Оглавление
email@scask.ru