Главная > Феймановские лекции по гравитации
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

7.7. Число величин, инвариантных под действием преобразований общего вида

В четырехмерной геометрии имеются двадцать коэффициентов, которые описывают кривизну способом, аналогичным тому, которым одна величина описывает внутреннюю кривизну двумерной поверхности. Эти двадцать величин определяют физически значимые свойства тензора то же, что мы должны сделать, так это упростить тензор разумным выбором координат, таким же способом, каким стало возможным определить геометрию двух измерений одной функцией в соотношении (7.6.2).

Мы видели, что вообще говоря, мы не можем устранить гравитационные поля суперпозицией ускорений, за исключением одной точки. Так как кривизна может быть задана точным определением того, что происходит в инфинитезимальной области вокруг заданной точки, целесообразно изучить соответствующим образом в какой степени может быть упрощен тензор . По аналогии с двумерным случаем мы можем полагать, что возможно выбрать координаты (называемые нормальными координатами Римана) таким образом, что пространство вокруг этой точки - плоское, за исключением членов второго порядка малости от расстояния до этой точки.

Другими словами, кривая поверхность отрывается от плоскости, которая является касательной к этой поверхности, причем отклонение поверхности от плоскости характеризуется величиной, которая квадратична от значений координат, измеряемых от точки касания; мы ожидаем, что аналогичная ситуация имеет место в четырехмерном пространстве.

Давайте подсчитаем, сколько величин мы можем точно определить при преобразованиях и насколько мы можем упростить если мы делаем разложение в ряд функции в окрестности некоторой точки Пусть любая точка в пространстве есть тогда имеется следующее разложение в ряд Тейлора функции в окрестности точки

Мы должны вычислить метрический тензор и его производные согласно правилу, выраженному соотношением (7.4.8), это приводит к

(7.7.2)

Мы видим, что для упрощения мы рассматриваем только разложение до второго порядка малости, мы должны выбрать наши преобразования таким образом, чтобы частные производные, появляющиеся в соотношениях (7.7.2), имели определенные значения. Мы можем точно определить следующие величины в нашем преобразовании

(Заметим, что порядок производных не имеет значения.) Другая сторона медали состоит в том, что количество величин и производных метрического тензора является следующим:

Сначала мы можем попытаться сделать так, чтобы выполнялось равенство . Это соотношение включает в себя только первые производные . У нас есть 10 условий, которым необходимо удовлетворить с помощью 16 свободных параметров. Мы можем легко удовлетворить этим условиям, и у нас останется еще свободными 6 степеней свободы. Эти шесть параметров являются параметрами специальной теории относительности, преобразований Лоренца и вращений (вектор скорости, ось вращения и угол), которые могут определять преобразования, оставляющие неизменным. Далее мы можем сделать так, чтобы все 40 производных в точности обращались в нуль, используя сорок величин

Производная появляется в уравнении движения для минимального действия . То, что эти производные могут в некоторой точке обращаться в нуль, означает, что все гравитационные силы могут быть устранены в любой выделенной точке пространства и в некоторый момент времени выбором подходящих ускорений.

Получившийся в конце концов результат состоит в том, что остаются двадцать линейных комбинаций вторых производных типа которые не могут быть устранены таким преобразованием. Это те величины, которые должны описывать детальное поведение приливных сил. В следующей лекции мы приступим к построению этих двадцати величин через компоненты тензора ди, заданные в какой бы то ни было системе координат, которую мы выбрали для исходного анализа.

1
Оглавление
email@scask.ru